BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 24834941)

  • 1. Neuronavigation using susceptibility-weighted venography: application to deep brain stimulation and comparison with gadolinium contrast.
    Bériault S; Sadikot AF; Alsubaie F; Drouin S; Collins DL; Pike GB
    J Neurosurg; 2014 Jul; 121(1):131-41. PubMed ID: 24834941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronavigation-assisted trajectory planning for deep brain biopsy with susceptibility-weighted imaging.
    Wang X; Li L; Luo P; Li L; Cui Q; Wang J; Jing Z; Wang Y
    Acta Neurochir (Wien); 2016 Jul; 158(7):1355-62. PubMed ID: 27165299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Susceptibility-Weighted MRI for Deep Brain Stimulation: Potentials in Trajectory Planning.
    Hertel F; Husch A; Dooms G; Bernard F; Gemmar P
    Stereotact Funct Neurosurg; 2015; 93(5):303-8. PubMed ID: 26202899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualization of small veins with susceptibility-weighted imaging for stereotactic trajectory planning in deep brain stimulation.
    Mahvash M; Pechlivanis I; Charalampaki P; Jansen O; Mehdorn HM
    Clin Neurol Neurosurg; 2014 Sep; 124():151-5. PubMed ID: 25051166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic resonance susceptibility weighted imaging in neurosurgery: current applications and future perspectives.
    Di Ieva A; Lam T; Alcaide-Leon P; Bharatha A; Montanera W; Cusimano MD
    J Neurosurg; 2015 Dec; 123(6):1463-75. PubMed ID: 26207600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiological validation of STN-SNr boundary depicted by susceptibility-weighted MRI.
    McEvoy J; Ughratdar I; Schwarz S; Basu S
    Acta Neurochir (Wien); 2015 Dec; 157(12):2129-34. PubMed ID: 26489736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of 3T Magnetic Resonance Imaging for Targeting the Human Subthalamic Nucleus in Deep Brain Stimulation for Parkinson Disease.
    Longhi M; Ricciardi G; Tommasi G; Nicolato A; Foroni R; Bertolasi L; Beltramello A; Moretto G; Tinazzi M; Gerosa M
    J Neurol Surg A Cent Eur Neurosurg; 2015 May; 76(3):181-9. PubMed ID: 25764475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Trajectory Planning With Susceptibility-Weighted Imaging for Intracranial Electrode Implantation.
    Barros G; Lang MJ; Mouchtouris N; Sharan AD; Wu C
    Oper Neurosurg (Hagerstown); 2018 Jul; 15(1):60-65. PubMed ID: 29048589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multi-modal approach to computer-assisted deep brain stimulation trajectory planning.
    Bériault S; Subaie FA; Collins DL; Sadikot AF; Pike GB
    Int J Comput Assist Radiol Surg; 2012 Sep; 7(5):687-704. PubMed ID: 22718401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can We Rely on Susceptibility-Weighted Imaging for Subthalamic Nucleus Identification in Deep Brain Stimulation Surgery?
    Bot M; Bour L; de Bie RM; Contarino MF; Schuurman PR; van den Munckhof P
    Neurosurgery; 2016 Mar; 78(3):353-60. PubMed ID: 26600278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Borders of STN determined by MRI versus the electrophysiological STN. A comparison using intraoperative CT.
    Bus S; van den Munckhof P; Bot M; Pal G; Ouyang B; Sani S; Verhagen Metman L
    Acta Neurochir (Wien); 2018 Feb; 160(2):373-383. PubMed ID: 29275518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization of the internal globus pallidus: sequence and orientation for deep brain stimulation using a standard installation protocol at 3.0 Tesla.
    Nölte IS; Gerigk L; Al-Zghloul M; Groden C; Kerl HU
    Acta Neurochir (Wien); 2012 Mar; 154(3):481-94. PubMed ID: 22167532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does probe's eye subthalamic nucleus length on T2W MRI correspond with microelectrode recording in patients with deep brain stimulation for advanced Parkinson's disease?
    Kocabicak E; Aygun D; Ozaydin I; Jahanshahi A; Tan S; Onar M; Boke O; Kurt M; Guz H; Terzi M; Alptekin O; Temel Y
    Turk Neurosurg; 2013; 23(5):658-65. PubMed ID: 24101315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discrepancies between the MRI- and the electrophysiologically defined subthalamic nucleus.
    Schlaier JR; Habermeyer C; Warnat J; Lange M; Janzen A; Hochreiter A; Proescholdt M; Brawanski A; Fellner C
    Acta Neurochir (Wien); 2011 Dec; 153(12):2307-18. PubMed ID: 21744142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical outcome of subthalamic stimulation in Parkinson's disease is improved by intraoperative multiple trajectories microelectrode recording.
    Reck C; Maarouf M; Wojtecki L; Groiss SJ; Florin E; Sturm V; Fink GR; Schnitzler A; Timmermann L
    J Neurol Surg A Cent Eur Neurosurg; 2012 Nov; 73(6):377-86. PubMed ID: 23042143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Susceptibility-enhanced 3-Tesla T1-weighted spoiled gradient echo of the midbrain nuclei for guidance of deep brain stimulation implantation.
    Young GS; Feng F; Shen H; Chen NK
    Neurosurgery; 2009 Oct; 65(4):809-15. PubMed ID: 19834387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic SWI Venography Segmentation Using Conditional Random Fields.
    Bériault S; Xiao Y; Collins DL; Pike GB
    IEEE Trans Med Imaging; 2015 Dec; 34(12):2478-91. PubMed ID: 26057611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Computerized Microelectrode Recording to Magnetic Resonance Imaging Mapping System for Subthalamic Nucleus Deep Brain Stimulation Surgery.
    Dodani SS; Lu CW; Aldridge JW; Chou KL; Patil PG
    Oper Neurosurg (Hagerstown); 2018 Jun; 14(6):661-667. PubMed ID: 28961898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic trajectory planning of DBS neurosurgery from multi-modal MRI datasets.
    Bériault S; Al Subaie F; Mok K; Sadikot AF; Pike GB
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 1):259-66. PubMed ID: 22003625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subthalamic nucleus stimulation in Parkinson's disease: postoperative CT-MRI fusion images confirm accuracy of electrode placement using intraoperative multi-unit recording.
    Shin M; Lefaucheur JP; Penholate MF; Brugières P; Gurruchaga JM; Nguyen JP
    Neurophysiol Clin; 2007 Dec; 37(6):457-66. PubMed ID: 18083502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.