BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 24835130)

  • 1. Imaging dendritic spines of rat primary hippocampal neurons using structured illumination microscopy.
    Schouten M; De Luca GM; Alatriste González DK; de Jong BE; Timmermans W; Xiong H; Krugers H; Manders EM; Fitzsimons CP
    J Vis Exp; 2014 May; (87):. PubMed ID: 24835130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Super-resolution structural analysis of dendritic spines using three-dimensional structured illumination microscopy in cleared mouse brain slices.
    Sawada K; Kawakami R; Shigemoto R; Nemoto T
    Eur J Neurosci; 2018 May; 47(9):1033-1042. PubMed ID: 29512842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in computational methods for measurement of dendritic spines imaged by light microscopy.
    Okabe S
    Microscopy (Oxf); 2020 Jul; 69(4):196-213. PubMed ID: 32244257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational geometry analysis of dendritic spines by structured illumination microscopy.
    Kashiwagi Y; Higashi T; Obashi K; Sato Y; Komiyama NH; Grant SGN; Okabe S
    Nat Commun; 2019 Mar; 10(1):1285. PubMed ID: 30894537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods of dendritic spine detection: from Golgi to high-resolution optical imaging.
    Mancuso JJ; Chen Y; Li X; Xue Z; Wong ST
    Neuroscience; 2013 Oct; 251():129-40. PubMed ID: 22522468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated 3-D Detection of Dendritic Spines from In Vivo Two-Photon Image Stacks.
    Singh PK; Hernandez-Herrera P; Labate D; Papadakis M
    Neuroinformatics; 2017 Oct; 15(4):303-319. PubMed ID: 28710672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Confocal Reflection Super-Resolution Technique to Image Golgi-Cox Stained Neurons.
    Sivaguru M; Khaw YM; Inoue M
    J Microsc; 2019 Aug; 275(2):115-130. PubMed ID: 31237354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of immersion oils and mounting media on the confocal imaging of dendritic spines.
    Peterson BM; Mermelstein PG; Meisel RL
    J Neurosci Methods; 2015 Mar; 242():106-11. PubMed ID: 25601477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. βIII Spectrin Is Necessary for Formation of the Constricted Neck of Dendritic Spines and Regulation of Synaptic Activity in Neurons.
    Efimova N; Korobova F; Stankewich MC; Moberly AH; Stolz DB; Wang J; Kashina A; Ma M; Svitkina T
    J Neurosci; 2017 Jul; 37(27):6442-6459. PubMed ID: 28576936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological analysis of dendritic spine development in primary cultures of hippocampal neurons.
    Papa M; Bundman MC; Greenberger V; Segal M
    J Neurosci; 1995 Jan; 15(1 Pt 1):1-11. PubMed ID: 7823120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and diversity of human dendritic spines evidenced by a new three-dimensional reconstruction procedure for Golgi staining and light microscopy.
    Reberger R; Dall'Oglio A; Jung CR; Rasia-Filho AA
    J Neurosci Methods; 2018 Jan; 293():27-36. PubMed ID: 28887132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological change tracking of dendritic spines based on structural features.
    Son J; Song S; Lee S; Chang S; Kim M
    J Microsc; 2011 Mar; 241(3):261-72. PubMed ID: 21223260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Merging advanced technologies with classical methods to uncover dendritic spine dynamics: A hot spot of synaptic plasticity.
    Maiti P; Manna J; McDonald MP
    Neurosci Res; 2015 Jul; 96():1-13. PubMed ID: 25728560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative 3-D morphometric analysis of individual dendritic spines.
    Basu S; Saha PK; Roszkowska M; Magnowska M; Baczynska E; Das N; Plewczynski D; Wlodarczyk J
    Sci Rep; 2018 Feb; 8(1):3545. PubMed ID: 29476060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron microscopic 3D-reconstruction of dendritic spines in cultured hippocampal neurons undergoing synaptic plasticity.
    Ovtscharoff W; Segal M; Goldin M; Helmeke C; Kreher U; Greenberger V; Herzog A; Michaelis B; Braun K
    Dev Neurobiol; 2008 Jun; 68(7):870-6. PubMed ID: 18327766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast extraction of neuron morphologies from large-scale SBFSEM image stacks.
    Lang S; Drouvelis P; Tafaj E; Bastian P; Sakmann B
    J Comput Neurosci; 2011 Nov; 31(3):533-45. PubMed ID: 21424815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic 2P-STED imaging reveals high turnover of dendritic spines in the hippocampus in vivo.
    Pfeiffer T; Poll S; Bancelin S; Angibaud J; Inavalli VK; Keppler K; Mittag M; Fuhrmann M; Nägerl UV
    Elife; 2018 Jun; 7():. PubMed ID: 29932052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Labeling of dendritic spines with the carbocyanine dye DiI for confocal microscopic imaging in lightly fixed cortical slices.
    Kim BG; Dai HN; McAtee M; Vicini S; Bregman BS
    J Neurosci Methods; 2007 May; 162(1-2):237-43. PubMed ID: 17346799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated quantification of dendritic spine density and spine head diameter in medium spiny neurons of the nucleus accumbens.
    Shen H; Sesack SR; Toda S; Kalivas PW
    Brain Struct Funct; 2008 Sep; 213(1-2):149-57. PubMed ID: 18535839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathway specificity of dendritic spine morphology in identified synapses onto rat hippocampal CA1 neurons in organotypic slices.
    De Simoni A; Edwards FA
    Hippocampus; 2006; 16(12):1111-24. PubMed ID: 17068782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.