BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 24835404)

  • 21. MnO
    Qi L; Yan Z; Huo Y; Hai XM; Zhang ZQ
    Biosens Bioelectron; 2017 Jan; 87():566-571. PubMed ID: 27614012
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Label-free and high-resolution protein/DNA nanoarray analysis using Kelvin probe force microscopy.
    Sinensky AK; Belcher AM
    Nat Nanotechnol; 2007 Oct; 2(10):653-9. PubMed ID: 18654392
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bio-mimetically synthesized Ag@BSA microspheres as a novel electrochemical biosensing interface for sensitive detection of tumor cells.
    Hu C; Yang DP; Wang Z; Huang P; Wang X; Chen D; Cui D; Yang M; Jia N
    Biosens Bioelectron; 2013 Mar; 41():656-62. PubMed ID: 23069357
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reusable evanescent wave DNA biosensor for rapid, highly sensitive, and selective detection of mercury ions.
    Long F; Gao C; Shi HC; He M; Zhu AN; Klibanov AM; Gu AZ
    Biosens Bioelectron; 2011 Jun; 26(10):4018-23. PubMed ID: 21550227
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-labeled hairpin probe for highly specific and sensitive detection of lead(II) based on the fluorescence quenching of deoxyguanosine and G-quartet.
    Wang W; Jin Y; Zhao Y; Yue X; Zhang C
    Biosens Bioelectron; 2013 Mar; 41():137-42. PubMed ID: 22954528
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Label-free biosensing over a wide concentration range with photonic force microscopy.
    Heo S; Kim K; Cho YH
    Chemphyschem; 2014 Jun; 15(8):1573-6. PubMed ID: 24692326
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A highly sensitive, direct and label-free technique for Hg(2+) detection using Kelvin probe force microscopy.
    Park C; Jang K; Lee S; You J; Lee S; Ha H; Yun K; Kim J; Lee H; Park J; Na S
    Nanotechnology; 2015 Jul; 26(30):305501. PubMed ID: 26152847
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein-based electrochemical biosensor for detection of silver(I) ions.
    Krizkova S; Huska D; Beklova M; Hubalek J; Adam V; Trnkova L; Kizek R
    Environ Toxicol Chem; 2010 Mar; 29(3):492-6. PubMed ID: 20821469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Atomic force microscopy characterization of an electrochemical DNA-biosensor.
    Chiorcea AM; Oliveira Brett AM
    Bioelectrochemistry; 2004 Jun; 63(1-2):229-32. PubMed ID: 15110277
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MoS2-based nanoprobes for detection of silver ions in aqueous solutions and bacteria.
    Yang Y; Liu T; Cheng L; Song G; Liu Z; Chen M
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7526-33. PubMed ID: 25776005
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Graphene oxide sheet-mediated silver enhancement for application to electrochemical biosensors.
    Wan Y; Wang Y; Wu J; Zhang D
    Anal Chem; 2011 Feb; 83(3):648-53. PubMed ID: 21175166
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional nucleic acid-based electrochemiluminescent biosensor for interaction study and detection of Ag+ ions and cysteine.
    Tang CX; Bu NN; He XW; Yin XB
    Chem Commun (Camb); 2011 Dec; 47(45):12304-6. PubMed ID: 22006537
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Atomic force microscopy and surface-enhanced Raman scattering detection of DNA based on DNA-nanoparticle complexes.
    Sun L; Sun Y; Xu F; Zhang Y; Yang T; Guo C; Liu Z; Li Z
    Nanotechnology; 2009 Mar; 20(12):125502. PubMed ID: 19420468
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel high-sensitive fluorescent detection of deoxyribonuclease I based on DNA-templated gold/silver nanoclusters.
    Dou Y; Yang X
    Anal Chim Acta; 2013 Jun; 784():53-8. PubMed ID: 23746408
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immobilization of metallothionein to carbon paste electrode surface via anti-MT antibodies and its use for biosensing of silver.
    Trnkova L; Krizkova S; Adam V; Hubalek J; Kizek R
    Biosens Bioelectron; 2011 Jan; 26(5):2201-7. PubMed ID: 20970982
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly sensitive and selective colorimetric sensing of Hg2+ based on the morphology transition of silver nanoprisms.
    Chen L; Fu X; Lu W; Chen L
    ACS Appl Mater Interfaces; 2013 Jan; 5(2):284-90. PubMed ID: 23237272
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg²⁺ in aqueous system.
    Rastogi L; Sashidhar RB; Karunasagar D; Arunachalam J
    Talanta; 2014 Jan; 118():111-7. PubMed ID: 24274277
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A simple "clickable" biosensor for colorimetric detection of copper(II) ions based on unmodified gold nanoparticles.
    Shen Q; Li W; Tang S; Hu Y; Nie Z; Huang Y; Yao S
    Biosens Bioelectron; 2013 Mar; 41():663-8. PubMed ID: 23089325
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On-chip biosensing of estrogen receptor-alpha at single molecular level.
    Wicaksono DH; Ebihara T; Funabashi H; Mie M; Yanagida Y; Aizawa M; Kobatake E
    Biosens Bioelectron; 2004 Jul; 19(12):1573-9. PubMed ID: 15142590
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Label-free fluorescent DNA sensor for the detection of silver ions based on molecular light switch Ru complex and unmodified quantum dots.
    Sun W; Yao J; Yao T; Shi S
    Analyst; 2013 Jan; 138(2):421-4. PubMed ID: 23162812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.