These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 24835471)

  • 1. Prediction of ground reaction forces and moments during various activities of daily living.
    Fluit R; Andersen MS; Kolk S; Verdonschot N; Koopman HF
    J Biomech; 2014 Jul; 47(10):2321-9. PubMed ID: 24835471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concurrent prediction of ground reaction forces and moments and tibiofemoral contact forces during walking using musculoskeletal modelling.
    Peng Y; Zhang Z; Gao Y; Chen Z; Xin H; Zhang Q; Fan X; Jin Z
    Med Eng Phys; 2018 Feb; 52():31-40. PubMed ID: 29269224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Musculoskeletal model-based inverse dynamic analysis under ambulatory conditions using inertial motion capture.
    Karatsidis A; Jung M; Schepers HM; Bellusci G; de Zee M; Veltink PH; Andersen MS
    Med Eng Phys; 2019 Mar; 65():68-77. PubMed ID: 30737118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of ground reaction forces during gait based on kinematics and a neural network model.
    Oh SE; Choi A; Mun JH
    J Biomech; 2013 Sep; 46(14):2372-80. PubMed ID: 23962528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of perturbing body segment parameters on calculated joint moments and muscle forces during gait.
    Wesseling M; de Groote F; Jonkers I
    J Biomech; 2014 Jan; 47(2):596-601. PubMed ID: 24332615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motion-Based Ground Reaction Forces and Moments Prediction Method for Interaction With a Moving and/or Non-Horizontal Structure.
    Demestre L; Morin P; May F; Bideau N; Nicolas G; Pontonnier C; Dumont G
    J Biomech Eng; 2022 Nov; 144(11):. PubMed ID: 35722981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motion-based prediction of external forces and moments and back loading during manual material handling tasks.
    Muller A; Pontonnier C; Robert-Lachaine X; Dumont G; Plamondon A
    Appl Ergon; 2020 Jan; 82():102935. PubMed ID: 31479837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of Ground Reaction Forces and Moments During Gait Using Only Inertial Motion Capture.
    Karatsidis A; Bellusci G; Schepers HM; de Zee M; Andersen MS; Veltink PH
    Sensors (Basel); 2016 Dec; 17(1):. PubMed ID: 28042857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating 3D L5/S1 moments and ground reaction forces during trunk bending using a full-body ambulatory inertial motion capture system.
    Faber GS; Chang CC; Kingma I; Dennerlein JT; van Dieën JH
    J Biomech; 2016 Apr; 49(6):904-912. PubMed ID: 26795123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of the external forces and moments at the shoulder and elbow while performing every day tasks.
    Murray IA; Johnson GR
    Clin Biomech (Bristol, Avon); 2004 Jul; 19(6):586-94. PubMed ID: 15234482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of Spinal Loading During Manual Materials Handling Using Inertial Motion Capture.
    Larsen FG; Svenningsen FP; Andersen MS; de Zee M; Skals S
    Ann Biomed Eng; 2020 Feb; 48(2):805-821. PubMed ID: 31748833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running.
    Jung Y; Jung M; Ryu J; Yoon S; Park SK; Koo S
    Gait Posture; 2016 Mar; 45():62-8. PubMed ID: 26979885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Change the direction: 3D optimal control simulation by directly tracking marker and ground reaction force data.
    Nitschke M; Marzilger R; Leyendecker S; Eskofier BM; Koelewijn AD
    PeerJ; 2023; 11():e14852. PubMed ID: 36778146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of muscle forces during normal gait under consideration of femoral bending moments.
    Lutz F; Mastel R; Runge M; Stief F; Schmidt A; Meurer A; Witte H
    Med Eng Phys; 2016 Sep; 38(9):1008-15. PubMed ID: 27318439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Review of Inverse Optimization for Functional and Physiological Considerations Related to the Force-Sharing Problem.
    Tsirakos D; Baltzopoulos V; Bartlett R
    Crit Rev Biomed Eng; 2017; 45(1-6):511-547. PubMed ID: 29953387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A foot/ground contact model for biomechanical inverse dynamics analysis.
    Van Hulle R; Schwartz C; Denoël V; Croisier JL; Forthomme B; Brüls O
    J Biomech; 2020 Feb; 100():109412. PubMed ID: 31959391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computation of ground reaction force using Zero Moment Point.
    Dijkstra EJ; Gutierrez-Farewik EM
    J Biomech; 2015 Nov; 48(14):3776-81. PubMed ID: 26482731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of knee flexion angle on ground reaction forces, knee moments and muscle co-contraction during an impact-like deceleration landing: implications for the non-contact mechanism of ACL injury.
    Podraza JT; White SC
    Knee; 2010 Aug; 17(4):291-5. PubMed ID: 20303276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of predicted knee-joint muscle forces during gait using an instrumented knee implant.
    Kim HJ; Fernandez JW; Akbarshahi M; Walter JP; Fregly BJ; Pandy MG
    J Orthop Res; 2009 Oct; 27(10):1326-31. PubMed ID: 19396858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Higher medially-directed joint reaction forces are a characteristic of dysplastic hips: A comparative study using subject-specific musculoskeletal models.
    Harris MD; MacWilliams BA; Bo Foreman K; Peters CL; Weiss JA; Anderson AE
    J Biomech; 2017 Mar; 54():80-87. PubMed ID: 28233552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.