BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 24835677)

  • 1. Characterization of a computationally designed water-soluble human μ-opioid receptor variant using available structural information.
    Zhao X; Perez-Aguilar JM; Matsunaga F; Lerner M; Xi J; Selling B; Johnson AT; Saven JG; Liu R
    Anesthesiology; 2014 Oct; 121(4):866-75. PubMed ID: 24835677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computationally designed water-soluble variant of a G-protein-coupled receptor: the human mu opioid receptor.
    Perez-Aguilar JM; Xi J; Matsunaga F; Cui X; Selling B; Saven JG; Liu R
    PLoS One; 2013; 8(6):e66009. PubMed ID: 23799068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of an engineered water-soluble variant of the full-length human mu opioid receptor.
    Xi J; Xiao J; Perez-Aguilar JM; Ping J; Johnson ATC; Saven JG; Liu R
    J Biomol Struct Dyn; 2020 Sep; 38(14):4364-4370. PubMed ID: 31588852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel variants of engineered water soluble mu opioid receptors with extensive mutations and removal of cysteines.
    Xi J; Yang N; Perez-Aguilar JM; Selling B; Grothusen JR; Lamichhane R; Saven JG; Liu R
    Proteins; 2021 Oct; 89(10):1386-1393. PubMed ID: 34152652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homology models of mu-opioid receptor with organic and inorganic cations at conserved aspartates in the second and third transmembrane domains.
    Zhorov BS; Ananthanarayanan VS
    Arch Biochem Biophys; 2000 Mar; 375(1):31-49. PubMed ID: 10683246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homology modeling and molecular dynamics simulations of the mu opioid receptor in a membrane-aqueous system.
    Zhang Y; Sham YY; Rajamani R; Gao J; Portoghese PS
    Chembiochem; 2005 May; 6(5):853-9. PubMed ID: 15776407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding mode characterization of 6α- and 6β-N-heterocyclic substituted naltrexamine derivatives via docking in opioid receptor crystal structures and site-directed mutagenesis studies: application of the 'message-address' concept in development of mu opioid receptor selective antagonists.
    Zaidi SA; Arnatt CK; He H; Selley DE; Mosier PD; Kellogg GE; Zhang Y
    Bioorg Med Chem; 2013 Nov; 21(21):6405-13. PubMed ID: 24055076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refinement of a homology model of the mu-opioid receptor using distance constraints from intrinsic and engineered zinc-binding sites.
    Fowler CB; Pogozheva ID; LeVine H; Mosberg HI
    Biochemistry; 2004 Jul; 43(27):8700-10. PubMed ID: 15236578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D modeling, ligand binding and activation studies of the cloned mouse delta, mu; and kappa opioid receptors.
    Filizola M; Laakkonen L; Loew GH
    Protein Eng; 1999 Nov; 12(11):927-42. PubMed ID: 10585498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. To probe interaction of morphine and IBNtxA with 7TM and 6TM variants of the human μ-opioid receptor using all-atom molecular dynamics simulations with an explicit membrane.
    Sader S; Anant K; Wu C
    Phys Chem Chem Phys; 2018 Jan; 20(3):1724-1741. PubMed ID: 29265141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Truncated Six Transmembrane Splice Variant MOR-1G Enhances Expression of the Full-Length Seven Transmembrane
    Zhang T; Xu J; Pan YX
    Mol Pharmacol; 2020 Oct; 98(4):518-527. PubMed ID: 32723770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the selectivity of oxymorphone- and naltrexone-derived ligands via site-directed mutagenesis of opioid receptors: exploring the "address" recognition locus.
    Metzger TG; Paterlini MG; Ferguson DM; Portoghese PS
    J Med Chem; 2001 Mar; 44(6):857-62. PubMed ID: 11300867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential stability of the crystallographic interfaces of mu- and kappa-opioid receptors.
    Johnston JM; Filizola M
    PLoS One; 2014; 9(2):e90694. PubMed ID: 24651466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimized Proteomic Mass Spectrometry Characterization of Recombinant Human μ-Opioid Receptor Functionally Expressed in Pichia pastoris Cell Lines.
    Rosa M; Bech-Serra JJ; Canals F; Zajac JM; Talmont F; Arsequell G; Valencia G
    J Proteome Res; 2015 Aug; 14(8):3162-73. PubMed ID: 26090583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering and functional immobilization of opioid receptors.
    Ott D; Neldner Y; Cèbe R; Dodevski I; Plückthun A
    Protein Eng Des Sel; 2005 Mar; 18(3):153-60. PubMed ID: 15790572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of norbinaltorphimine (norBNI) congeners to wild-type and mutant mu and kappa opioid receptors: molecular recognition loci for the pharmacophore and address components of kappa antagonists.
    Larson DL; Jones RM; Hjorth SA; Schwartz TW; Portoghese PS
    J Med Chem; 2000 Apr; 43(8):1573-6. PubMed ID: 10780914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable production of highly sensitive nanosensors based on graphene functionalized with a designed G protein-coupled receptor.
    Lerner MB; Matsunaga F; Han GH; Hong SJ; Xi J; Crook A; Perez-Aguilar JM; Park YW; Saven JG; Liu R; Johnson AT
    Nano Lett; 2014 May; 14(5):2709-14. PubMed ID: 24742304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylation and agonist-specific intracellular trafficking of an epitope-tagged mu-opioid receptor expressed in HEK 293 cells.
    Arden JR; Segredo V; Wang Z; Lameh J; Sadée W
    J Neurochem; 1995 Oct; 65(4):1636-45. PubMed ID: 7561859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and characterization of seven new exon 11-associated splice variants of the rat μ opioid receptor gene, OPRM1.
    Xu J; Xu M; Rossi GC; Pasternak GW; Pan YX
    Mol Pain; 2011 Jan; 7():9. PubMed ID: 21255438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The local environment at the cytoplasmic end of TM6 of the mu opioid receptor differs from those of rhodopsin and monoamine receptors: introduction of an ionic lock between the cytoplasmic ends of helices 3 and 6 by a L6.30(275)E mutation inactivates the mu opioid receptor and reduces the constitutive activity of its T6.34(279)K mutant.
    Huang P; Visiers I; Weinstein H; Liu-Chen LY
    Biochemistry; 2002 Oct; 41(40):11972-80. PubMed ID: 12356297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.