These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 24835736)
1. The βγ-crystallins: native state stability and pathways to aggregation. Serebryany E; King JA Prog Biophys Mol Biol; 2014 Jul; 115(1):32-41. PubMed ID: 24835736 [TBL] [Abstract][Full Text] [Related]
2. Aggregation of Trp > Glu point mutants of human gamma-D crystallin provides a model for hereditary or UV-induced cataract. Serebryany E; Takata T; Erickson E; Schafheimer N; Wang Y; King JA Protein Sci; 2016 Jun; 25(6):1115-28. PubMed ID: 26991007 [TBL] [Abstract][Full Text] [Related]
3. Divalent Cations and the Divergence of Roskamp KW; Kozlyuk N; Sengupta S; Bierma JC; Martin RW Biochemistry; 2019 Nov; 58(45):4505-4518. PubMed ID: 31647219 [TBL] [Abstract][Full Text] [Related]
4. Structural integrity of the Greek key motif in βγ-crystallins is vital for central eye lens transparency. Vendra VP; Agarwal G; Chandani S; Talla V; Srinivasan N; Balasubramanian D PLoS One; 2013; 8(8):e70336. PubMed ID: 23936409 [TBL] [Abstract][Full Text] [Related]
6. Cataract-causing defect of a mutant γ-crystallin proceeds through an aggregation pathway which bypasses recognition by the α-crystallin chaperone. Moreau KL; King JA PLoS One; 2012; 7(5):e37256. PubMed ID: 22655036 [TBL] [Abstract][Full Text] [Related]
7. Partially folded aggregation intermediates of human gammaD-, gammaC-, and gammaS-crystallin are recognized and bound by human alphaB-crystallin chaperone. Acosta-Sampson L; King J J Mol Biol; 2010 Aug; 401(1):134-52. PubMed ID: 20621668 [TBL] [Abstract][Full Text] [Related]
9. Subunit exchange demonstrates a differential chaperone activity of calf alpha-crystallin toward beta LOW- and individual gamma-crystallins. Putilina T; Skouri-Panet F; Prat K; Lubsen NH; Tardieu A J Biol Chem; 2003 Apr; 278(16):13747-56. PubMed ID: 12562766 [TBL] [Abstract][Full Text] [Related]
10. Aggregation of γ-crystallins associated with human cataracts via domain swapping at the C-terminal β-strands. Das P; King JA; Zhou R Proc Natl Acad Sci U S A; 2011 Jun; 108(26):10514-9. PubMed ID: 21670251 [TBL] [Abstract][Full Text] [Related]
12. Interactions of chlorpromazine with alpha-, beta- and gamma-crystallins. Bhattacharyya J; Sharma KK J Ocul Pharmacol Ther; 2002 Dec; 18(6):571-9. PubMed ID: 12537683 [TBL] [Abstract][Full Text] [Related]
13. The Functional Significance of High Cysteine Content in Eye Lens γ-Crystallins. Serebryany E; Martin RW; Takahashi GR Biomolecules; 2024 May; 14(5):. PubMed ID: 38786000 [TBL] [Abstract][Full Text] [Related]
14. Comparative analysis of crystallins and lipids from the lens of Antarctic toothfish and cow. Kiss AJ; Devries AL; Morgan-Kiss RM J Comp Physiol B; 2010 Oct; 180(7):1019-32. PubMed ID: 20490507 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional domain swapping in nitrollin, a single-domain betagamma-crystallin from Nitrosospira multiformis, controls protein conformation and stability but not dimerization. Aravind P; Suman SK; Mishra A; Sharma Y; Sankaranarayanan R J Mol Biol; 2009 Jan; 385(1):163-77. PubMed ID: 18976659 [TBL] [Abstract][Full Text] [Related]
16. Disability for function: loss of Ca(2+)-binding is obligatory for fitness of mammalian βγ-crystallins. Suman SK; Mishra A; Yeramala L; Rastogi ID; Sharma Y Biochemistry; 2013 Dec; 52(50):9047-58. PubMed ID: 24251594 [TBL] [Abstract][Full Text] [Related]
17. Molecular evolution of the betagamma lens crystallin superfamily: evidence for a retained ancestral function in gamma N crystallins? Weadick CJ; Chang BS Mol Biol Evol; 2009 May; 26(5):1127-42. PubMed ID: 19233964 [TBL] [Abstract][Full Text] [Related]
19. An Internal Disulfide Locks a Misfolded Aggregation-prone Intermediate in Cataract-linked Mutants of Human γD-Crystallin. Serebryany E; Woodard JC; Adkar BV; Shabab M; King JA; Shakhnovich EI J Biol Chem; 2016 Sep; 291(36):19172-83. PubMed ID: 27417136 [TBL] [Abstract][Full Text] [Related]
20. Proteostasis and the Regulation of Intra- and Extracellular Protein Aggregation by ATP-Independent Molecular Chaperones: Lens α-Crystallins and Milk Caseins. Carver JA; Ecroyd H; Truscott RJW; Thorn DC; Holt C Acc Chem Res; 2018 Mar; 51(3):745-752. PubMed ID: 29442498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]