BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 24836001)

  • 21. Translation arrest requires two-way communication between a nascent polypeptide and the ribosome.
    Woolhead CA; Johnson AE; Bernstein HD
    Mol Cell; 2006 Jun; 22(5):587-98. PubMed ID: 16762832
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The ABCF proteins in Escherichia coli individually cope with 'hard-to-translate' nascent peptide sequences.
    Chadani Y; Yamanouchi S; Uemura E; Yamasaki K; Niwa T; Ikeda T; Kurihara M; Iwasaki W; Taguchi H
    Nucleic Acids Res; 2024 Jun; 52(10):5825-5840. PubMed ID: 38661232
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic identification of nascent peptides that induce ribosome stalling.
    Tanner DR; Cariello DA; Woolstenhulme CJ; Broadbent MA; Buskirk AR
    J Biol Chem; 2009 Dec; 284(50):34809-18. PubMed ID: 19840930
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sequence-dependent elongation dynamics on macrolide-bound ribosomes.
    Johansson M; Chen J; Tsai A; Kornberg G; Puglisi JD
    Cell Rep; 2014 Jun; 7(5):1534-1546. PubMed ID: 24836000
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The plasticity of a translation arrest motif yields insights into nascent polypeptide recognition inside the ribosome tunnel.
    Yap MN; Bernstein HD
    Mol Cell; 2009 Apr; 34(2):201-11. PubMed ID: 19394297
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural Basis for Polyproline-Mediated Ribosome Stalling and Rescue by the Translation Elongation Factor EF-P.
    Huter P; Arenz S; Bock LV; Graf M; Frister JO; Heuer A; Peil L; Starosta AL; Wohlgemuth I; Peske F; Nováček J; Berninghausen O; Grubmüller H; Tenson T; Beckmann R; Rodnina MV; Vaiana AC; Wilson DN
    Mol Cell; 2017 Nov; 68(3):515-527.e6. PubMed ID: 29100052
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Translation arrest of SecM is essential for the basal and regulated expression of SecA.
    Murakami A; Nakatogawa H; Ito K
    Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12330-5. PubMed ID: 15302932
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Small protein domains fold inside the ribosome exit tunnel.
    Marino J; von Heijne G; Beckmann R
    FEBS Lett; 2016 Mar; 590(5):655-60. PubMed ID: 26879042
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural insight into nascent polypeptide chain-mediated translational stalling.
    Seidelt B; Innis CA; Wilson DN; Gartmann M; Armache JP; Villa E; Trabuco LG; Becker T; Mielke T; Schulten K; Steitz TA; Beckmann R
    Science; 2009 Dec; 326(5958):1412-5. PubMed ID: 19933110
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amino acid sequence repertoire of the bacterial proteome and the occurrence of untranslatable sequences.
    Navon SP; Kornberg G; Chen J; Schwartzman T; Tsai A; Puglisi EV; Puglisi JD; Adir N
    Proc Natl Acad Sci U S A; 2016 Jun; 113(26):7166-70. PubMed ID: 27307442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intracellular ribosome display via SecM translation arrest as a selection for antibodies with enhanced cytosolic stability.
    Contreras-Martínez LM; DeLisa MP
    J Mol Biol; 2007 Sep; 372(2):513-24. PubMed ID: 17669427
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recruitment of a species-specific translational arrest module to monitor different cellular processes.
    Chiba S; Kanamori T; Ueda T; Akiyama Y; Pogliano K; Ito K
    Proc Natl Acad Sci U S A; 2011 Apr; 108(15):6073-8. PubMed ID: 21383133
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploiting translational stalling peptides in an effort to extend azithromycin interaction within the prokaryotic ribosome nascent peptide exit tunnel.
    Washington AZ; Tapadar S; George A; Oyelere AK
    Bioorg Med Chem; 2015 Aug; 23(16):5198-209. PubMed ID: 26037612
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Translational stalling at polyproline stretches is modulated by the sequence context upstream of the stall site.
    Starosta AL; Lassak J; Peil L; Atkinson GC; Virumäe K; Tenson T; Remme J; Jung K; Wilson DN
    Nucleic Acids Res; 2014; 42(16):10711-9. PubMed ID: 25143529
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploration of the arrest peptide sequence space reveals arrest-enhanced variants.
    Cymer F; Hedman R; Ismail N; von Heijne G
    J Biol Chem; 2015 Apr; 290(16):10208-15. PubMed ID: 25713070
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The landscape of translational stall sites in bacteria revealed by monosome and disome profiling.
    Fujita T; Yokoyama T; Shirouzu M; Taguchi H; Ito T; Iwasaki S
    RNA; 2022 Mar; 28(3):290-302. PubMed ID: 34906996
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Programmed drug-dependent ribosome stalling.
    Ramu H; Mankin A; Vazquez-Laslop N
    Mol Microbiol; 2009 Feb; 71(4):811-24. PubMed ID: 19170872
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modulating the activity of the peptidyl transferase center of the ribosome.
    Beringer M
    RNA; 2008 May; 14(5):795-801. PubMed ID: 18369182
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ribosome stalling during translation elongation induces cleavage of mRNA being translated in Escherichia coli.
    Sunohara T; Jojima K; Tagami H; Inada T; Aiba H
    J Biol Chem; 2004 Apr; 279(15):15368-75. PubMed ID: 14744860
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects on translation pausing of alterations in protein and RNA components of the ribosome exit tunnel.
    Lawrence MG; Lindahl L; Zengel JM
    J Bacteriol; 2008 Sep; 190(17):5862-9. PubMed ID: 18586934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.