BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

750 related articles for article (PubMed ID: 24836120)

  • 1. Does seawater acidification affect survival, growth and shell integrity in bivalve juveniles?
    Bressan M; Chinellato A; Munari M; Matozzo V; Manci A; Marčeta T; Finos L; Moro I; Pastore P; Badocco D; Marin MG
    Mar Environ Res; 2014 Aug; 99():136-48. PubMed ID: 24836120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental salinity modulates the effects of elevated CO2 levels on juvenile hard-shell clams, Mercenaria mercenaria.
    Dickinson GH; Matoo OB; Tourek RT; Sokolova IM; Beniash E
    J Exp Biol; 2013 Jul; 216(Pt 14):2607-18. PubMed ID: 23531824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biogeography of ocean acidification: Differential field performance of transplanted mussels to upwelling-driven variation in carbonate chemistry.
    Rose JM; Blanchette CA; Chan F; Gouhier TC; Raimondi PT; Sanford E; Menge BA
    PLoS One; 2020; 15(7):e0234075. PubMed ID: 32678823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ocean Acidification Has Multiple Modes of Action on Bivalve Larvae.
    Waldbusser GG; Hales B; Langdon CJ; Haley BA; Schrader P; Brunner EL; Gray MW; Miller CA; Gimenez I; Hutchinson G
    PLoS One; 2015; 10(6):e0128376. PubMed ID: 26061095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ocean acidification adversely influences metabolism, extracellular pH and calcification of an economically important marine bivalve, Tegillarca granosa.
    Zhao X; Shi W; Han Y; Liu S; Guo C; Fu W; Chai X; Liu G
    Mar Environ Res; 2017 Apr; 125():82-89. PubMed ID: 28188988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does exposure to reduced pH and diclofenac induce oxidative stress in marine bivalves? A comparative study with the mussel Mytilus galloprovincialis and the clam Ruditapes philippinarum.
    Munari M; Matozzo V; Gagné F; Chemello G; Riedl V; Finos L; Pastore P; Badocco D; Marin MG
    Environ Pollut; 2018 Sep; 240():925-937. PubMed ID: 29949844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological energetics of the thick shell mussel Mytilus coruscus exposed to seawater acidification and thermal stress.
    Wang Y; Li L; Hu M; Lu W
    Sci Total Environ; 2015 May; 514():261-72. PubMed ID: 25666286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of ocean acidification on the shells of four Mediterranean gastropod species near a CO
    Duquette A; McClintock JB; Amsler CD; Pérez-Huerta A; Milazzo M; Hall-Spencer JM
    Mar Pollut Bull; 2017 Nov; 124(2):917-928. PubMed ID: 28823551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ocean acidification reduces the crystallographic control in juvenile mussel shells.
    Fitzer SC; Cusack M; Phoenix VR; Kamenos NA
    J Struct Biol; 2014 Oct; 188(1):39-45. PubMed ID: 25180664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactive effects of seawater acidification and elevated temperature on biomineralization and amino acid metabolism in the mussel Mytilus edulis.
    Li S; Liu C; Huang J; Liu Y; Zheng G; Xie L; Zhang R
    J Exp Biol; 2015 Nov; 218(Pt 22):3623-31. PubMed ID: 26417015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Giant Clams and Rising CO2: Light May Ameliorate Effects of Ocean Acidification on a Solar-Powered Animal.
    Watson SA
    PLoS One; 2015; 10(6):e0128405. PubMed ID: 26083404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Historical baselines and the future of shell calcification for a foundation species in a changing ocean.
    Pfister CA; Roy K; Wootton JT; McCoy SJ; Paine RT; Suchanek TH; Sanford E
    Proc Biol Sci; 2016 Jun; 283(1832):. PubMed ID: 27306049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Food supply and seawater pCO2 impact calcification and internal shell dissolution in the blue mussel Mytilus edulis.
    Melzner F; Stange P; Trübenbach K; Thomsen J; Casties I; Panknin U; Gorb SN; Gutowska MA
    PLoS One; 2011; 6(9):e24223. PubMed ID: 21949698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of increased sea water concentrations of CO2 on growth of the bivalve Mytilus edulis L.
    Berge JA; Bjerkeng B; Pettersen O; Schaanning MT; Øxnevad S
    Chemosphere; 2006 Jan; 62(4):681-7. PubMed ID: 15990149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of high pCO2 on shell structure of the bivalve Cerastoderma edule.
    Milano S; Schöne BR; Wang S; Müller WE
    Mar Environ Res; 2016 Aug; 119():144-55. PubMed ID: 27285613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coping with seawater acidification and the emerging contaminant diclofenac at the larval stage: A tale from the clam Ruditapes philippinarum.
    Munari M; Chemello G; Finos L; Ingrosso G; Giani M; Marin MG
    Chemosphere; 2016 Oct; 160():293-302. PubMed ID: 27391052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bivalve shell formation in a naturally CO
    Zhao L; Milano S; Walliser EO; Schöne BR
    Chemosphere; 2018 Jul; 203():132-138. PubMed ID: 29614406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The clam (Chamelea gallina): evaluation of the effects of solids suspended in seawater on bivalve molluscs.
    Angioni SA; Giansante C; Ferri N
    Vet Ital; 2010; 46(1):101-6, 93-99. PubMed ID: 20391371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can the combination of decreased pH and increased temperature values induce oxidative stress in the clam Chamelea gallina and the mussel Mytilus galloprovincialis?
    Matozzo V; Chinellato A; Munari M; Bressan M; Marin MG
    Mar Pollut Bull; 2013 Jul; 72(1):34-40. PubMed ID: 23756112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-predatory responses of the thick shell mussel Mytilus coruscus exposed to seawater acidification and hypoxia.
    Sui Y; Hu M; Huang X; Wang Y; Lu W
    Mar Environ Res; 2015 Aug; 109():159-67. PubMed ID: 26210406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.