These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 24836300)
21. Receptor modelling of airborne particulate matter in the vicinity of a major steelworks site. Taiwo AM; Beddows DC; Calzolai G; Harrison RM; Lucarelli F; Nava S; Shi Z; Valli G; Vecchi R Sci Total Environ; 2014 Aug; 490():488-500. PubMed ID: 24875261 [TBL] [Abstract][Full Text] [Related]
22. Particulate matter in California: part 1--Intercomparison of several PM2.5, PM10-2.5, and PM10 monitoring networks. Motallebi N; Taylor CA; Turkiewicz K; Croes BE J Air Waste Manag Assoc; 2003 Dec; 53(12):1509-16. PubMed ID: 14700137 [TBL] [Abstract][Full Text] [Related]
23. Spatial-temporal variations and mineral dust fractions in particulate matter mass concentrations in an urban area of northwestern China. Guan Q; Li F; Yang L; Zhao R; Yang Y; Luo H J Environ Manage; 2018 Sep; 222():95-103. PubMed ID: 29804037 [TBL] [Abstract][Full Text] [Related]
24. Using low cost open-face passive samplers to sample PM concentration and elemental composition in childcare facilities. Wang ZM; Zhou Y; Gaspar FW; Bradman A Environ Sci Process Impacts; 2020 Jul; 22(7):1502-1513. PubMed ID: 32555849 [TBL] [Abstract][Full Text] [Related]
25. Characterization of coarse particulate matter in school gyms. Braniš M; Šafránek J Environ Res; 2011 May; 111(4):485-91. PubMed ID: 21458792 [TBL] [Abstract][Full Text] [Related]
26. Inhalable desert dust, urban emissions, and potentially biotoxic metals in urban Saharan-Sahelian air. Garrison VH; Majewski MS; Konde L; Wolf RE; Otto RD; Tsuneoka Y Sci Total Environ; 2014 Dec; 500-501():383-94. PubMed ID: 25243921 [TBL] [Abstract][Full Text] [Related]
27. Quantifying the contribution of long-range Saharan dust transport on particulate matter concentrations in Houston, Texas, using detailed elemental analysis. Bozlaker A; Prospero JM; Fraser MP; Chellam S Environ Sci Technol; 2013 Sep; 47(18):10179-87. PubMed ID: 23957269 [TBL] [Abstract][Full Text] [Related]
28. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air. Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489 [TBL] [Abstract][Full Text] [Related]
29. [Individual particle morphology and bioreactivity of PM10 in Beijing during the 2008 Olympic Games]. Shao LY; Song XY; Liu JX; Zhou L Huan Jing Ke Xue; 2009 Dec; 30(12):3448-54. PubMed ID: 20187370 [TBL] [Abstract][Full Text] [Related]
30. Characterization of particulate matter sources in an urban environment. Mazzei F; D'Alessandro A; Lucarelli F; Nava S; Prati P; Valli G; Vecchi R Sci Total Environ; 2008 Aug; 401(1-3):81-9. PubMed ID: 18486189 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of the contribution of local sources to trace metals levels in urban PM2.5 and PM10 in the Cantabria region (Northern Spain). Arruti A; Fernández-Olmo I; Irabien A J Environ Monit; 2010 Jul; 12(7):1451-8. PubMed ID: 20517581 [TBL] [Abstract][Full Text] [Related]
32. Effect of chemical composition on the induction of DNA damage by urban airborne particulate matter. Gutiérrez-Castillo ME; Roubicek DA; Cebrián-García ME; De Vizcaya-Ruíz A; Sordo-Cedeño M; Ostrosky-Wegman P Environ Mol Mutagen; 2006 Apr; 47(3):199-211. PubMed ID: 16355389 [TBL] [Abstract][Full Text] [Related]
33. Source apportionment of synchronously size segregated fine and coarse particulate matter, using an improved three-way factor analysis model. Shi GL; Tian YZ; Ye S; Peng X; Xu J; Wang W; Han B; Feng YC Sci Total Environ; 2015 Feb; 505():1182-90. PubMed ID: 25461116 [TBL] [Abstract][Full Text] [Related]
34. Comparative PM10-PM2.5 source contribution study at rural, urban and industrial sites during PM episodes in Eastern Spain. Rodríguez S; Querol X; Alastuey A; Viana MM; Alarcón M; Mantilla E; Ruiz CR Sci Total Environ; 2004 Jul; 328(1-3):95-113. PubMed ID: 15207576 [TBL] [Abstract][Full Text] [Related]
35. Particulate matter concentration and air quality affected by windblown dust in the Columbia plateau. Sharratt BS; Lauer D J Environ Qual; 2006; 35(6):2011-6. PubMed ID: 17071869 [TBL] [Abstract][Full Text] [Related]
36. Aerosol size distribution and mass concentration measurements in various cities of Pakistan. Alam K; Blaschke T; Madl P; Mukhtar A; Hussain M; Trautmann T; Rahman S J Environ Monit; 2011 Jul; 13(7):1944-52. PubMed ID: 21677943 [TBL] [Abstract][Full Text] [Related]
37. Evaluation of coarse and fine particles in diverse Indian environments. George KV; Patil DD; Anil MN; Kamal N; Alappat BJ; Kumar P Environ Sci Pollut Res Int; 2017 Feb; 24(4):3363-3374. PubMed ID: 27866359 [TBL] [Abstract][Full Text] [Related]
38. Source identification of different size fraction of PM10 using factor analysis at residential cum commercial area of Nagpur city. Pipalatkar PP; Gajghate DG; Khaparde VV Bull Environ Contam Toxicol; 2012 Feb; 88(2):260-4. PubMed ID: 22033656 [TBL] [Abstract][Full Text] [Related]
39. Carbonaceous and ionic compositional patterns of fine particles over an urban Mediterranean area. Pateraki S; Assimakopoulos VD; Bougiatioti A; Kouvarakis G; Mihalopoulos N; Vasilakos Ch Sci Total Environ; 2012 May; 424():251-63. PubMed ID: 22425278 [TBL] [Abstract][Full Text] [Related]
40. Seasonal variation of black carbon in fine particulate matter (PM2.5) at the tropical coastal city of Mumbai, India. Sandeep P; Saradhi IV; Pandit GG Bull Environ Contam Toxicol; 2013 Nov; 91(5):605-10. PubMed ID: 24048219 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]