These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 24836460)

  • 1. Capillary flow layer-by-layer: a microfluidic platform for the high-throughput assembly and screening of nanolayered film libraries.
    Castleberry SA; Li W; Deng D; Mayner S; Hammond PT
    ACS Nano; 2014 Jul; 8(7):6580-9. PubMed ID: 24836460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A benchtop capillary flow layer-by-layer (CF-LbL) platform for rapid assembly and screening of biodegradable nanolayered films.
    Dong Z; Tang L; Ahrens CC; Ding Z; Cao V; Castleberry S; Yan J; Li W
    Lab Chip; 2016 Nov; 16(23):4601-4611. PubMed ID: 27785506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Microfluidic E-Tongue System Using Layer-by-Layer Films Deposited onto Interdigitated Electrodes Inside a Polydimethylsiloxane Microchannel.
    Braunger ML; Daikuzono CM; Riul A
    Methods Mol Biol; 2019; 2027():141-150. PubMed ID: 31309478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic droplet trapping array as nanoliter reactors for gas-liquid chemical reaction.
    Zhang Q; Zeng S; Qin J; Lin B
    Electrophoresis; 2009 Sep; 30(18):3181-8. PubMed ID: 19705356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Throughput Layer-by-Layer Films for Extracting Film Forming Parameters and Modulating Film Interactions with Cells.
    Jaklenec A; Anselmo AC; Hong J; Vegas AJ; Kozminsky M; Langer R; Hammond PT; Anderson DG
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2255-61. PubMed ID: 26713554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid prototyping of PDMS devices using SU-8 lithography.
    Jenkins G
    Methods Mol Biol; 2013; 949():153-68. PubMed ID: 23329442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Layer-by-layer films with bioreducible and nonbioreducible polycations for sequential DNA release.
    Zou Y; Xie L; Carroll S; Muniz M; Gibson H; Wei WZ; Liu H; Mao G
    Biomacromolecules; 2014 Nov; 15(11):3965-75. PubMed ID: 25360688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-governed capillary flow in microfluidic systems.
    Jiang L; Erickson D
    Small; 2013 Jan; 9(1):107-14. PubMed ID: 23015307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface modification of poly(dimethylsiloxane) microfluidic devices and its application in simultaneous analysis of uric acid and ascorbic acid in human urine.
    Liang RP; Gan GH; Qiu JD
    J Sep Sci; 2008 Aug; 31(15):2860-7. PubMed ID: 18655017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Composite Layer-by-Layer (LBL) assembly with inorganic nanoparticles and nanowires.
    Srivastava S; Kotov NA
    Acc Chem Res; 2008 Dec; 41(12):1831-41. PubMed ID: 19053241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated spin-assisted layer-by-layer assembly of nanocomposites.
    Vozar S; Poh YC; Serbowicz T; Bachner M; Podsiadlo P; Qin M; Verploegen E; Kotov N; Hart AJ
    Rev Sci Instrum; 2009 Feb; 80(2):023903. PubMed ID: 19256658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices.
    Nock V; Blaikie RJ; David T
    Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-chip self-assembly of cell embedded microstructures to vascular-like microtubes.
    Yue T; Nakajima M; Takeuchi M; Hu C; Huang Q; Fukuda T
    Lab Chip; 2014 Mar; 14(6):1151-61. PubMed ID: 24472895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capillary based patterning of cellular communities in laterally open channels.
    Lee SH; Heinz AJ; Shin S; Jung YG; Choi SE; Park W; Roe JH; Kwon S
    Anal Chem; 2010 Apr; 82(7):2900-6. PubMed ID: 20210331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent developments in PDMS surface modification for microfluidic devices.
    Zhou J; Ellis AV; Voelcker NH
    Electrophoresis; 2010 Jan; 31(1):2-16. PubMed ID: 20039289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels.
    Shin Y; Han S; Jeon JS; Yamamoto K; Zervantonakis IK; Sudo R; Kamm RD; Chung S
    Nat Protoc; 2012 Jun; 7(7):1247-59. PubMed ID: 22678430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-loading and cell culture in one layer microfluidic devices.
    Wang L; Ni XF; Luo CX; Zhang ZL; Pang DW; Chen Y
    Biomed Microdevices; 2009 Jun; 11(3):679-84. PubMed ID: 19130238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Achieving low-fouling surfaces with oppositely charged polysaccharides via LBL assembly.
    Wei Y; Hung HC; Sun F; Bai T; Zhang P; Nowinski AK; Jiang S
    Acta Biomater; 2016 Aug; 40():16-22. PubMed ID: 27063489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-sealed vertical polymeric nanoporous-junctions for high-throughput nanofluidic applications.
    Kim SJ; Han J
    Anal Chem; 2008 May; 80(9):3507-11. PubMed ID: 18380489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the Structural Mechanism and Film Growth on Cytoprotective Type I Collagen-Based Nanocoating of Individual Cellular Surfaces.
    Choi D; Heo J; Hong J
    Langmuir; 2021 Apr; 37(15):4587-4598. PubMed ID: 33822629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.