These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. KCTD Hetero-oligomers Confer Unique Kinetic Properties on Hippocampal GABAB Receptor-Induced K+ Currents. Fritzius T; Turecek R; Seddik R; Kobayashi H; Tiao J; Rem PD; Metz M; Kralikova M; Bouvier M; Gassmann M; Bettler B J Neurosci; 2017 Feb; 37(5):1162-1175. PubMed ID: 28003345 [TBL] [Abstract][Full Text] [Related]
4. Structural basis for KCTD-mediated rapid desensitization of GABA Zheng S; Abreu N; Levitz J; Kruse AC Nature; 2019 Mar; 567(7746):127-131. PubMed ID: 30814734 [TBL] [Abstract][Full Text] [Related]
5. Differential effects of genetically-encoded Gβγ scavengers on receptor-activated and basal Kir3.1/Kir3.4 channel current in rat atrial myocytes. Kienitz MC; Mintert-Jancke E; Hertel F; Pott L Cell Signal; 2014 Jun; 26(6):1182-92. PubMed ID: 24576551 [TBL] [Abstract][Full Text] [Related]
6. Pharmacological characterization of GABAB receptor subtypes assembled with auxiliary KCTD subunits. Rajalu M; Fritzius T; Adelfinger L; Jacquier V; Besseyrias V; Gassmann M; Bettler B Neuropharmacology; 2015 Jan; 88():145-54. PubMed ID: 25196734 [TBL] [Abstract][Full Text] [Related]
7. Preassembly of specific Gβγ subunits at GABA Fritzius T; Tureček R; Fernandez-Fernandez D; Isogai S; Rem PD; Kralikova M; Gassmann M; Bettler B Biochem Pharmacol; 2024 Oct; 228():116176. PubMed ID: 38555036 [TBL] [Abstract][Full Text] [Related]
8. Dominant role of GABAB2 and Gbetagamma for GABAB receptor-mediated-ERK1/2/CREB pathway in cerebellar neurons. Tu H; Rondard P; Xu C; Bertaso F; Cao F; Zhang X; Pin JP; Liu J Cell Signal; 2007 Sep; 19(9):1996-2002. PubMed ID: 17582742 [TBL] [Abstract][Full Text] [Related]
9. Evidence for oligomerization between GABAB receptors and GIRK channels containing the GIRK1 and GIRK3 subunits. Ciruela F; Fernández-Dueñas V; Sahlholm K; Fernández-Alacid L; Nicolau JC; Watanabe M; Luján R Eur J Neurosci; 2010 Oct; 32(8):1265-77. PubMed ID: 20846323 [TBL] [Abstract][Full Text] [Related]
10. Interactions between GABA-B1 receptors and Kir 3 inwardly rectifying potassium channels. David M; Richer M; Mamarbachi AM; Villeneuve LR; Dupré DJ; Hebert TE Cell Signal; 2006 Dec; 18(12):2172-81. PubMed ID: 16809021 [TBL] [Abstract][Full Text] [Related]
11. Ric-8 enhances G protein betagamma-dependent signaling in response to betagamma-binding peptides in intact cells. Malik S; Ghosh M; Bonacci TM; Tall GG; Smrcka AV Mol Pharmacol; 2005 Jul; 68(1):129-36. PubMed ID: 15802611 [TBL] [Abstract][Full Text] [Related]
12. Desensitization of GABA(B) receptor signaling by formation of protein complexes of GABA(B2) subunit with GRK4 or GRK5. Kanaide M; Uezono Y; Matsumoto M; Hojo M; Ando Y; Sudo Y; Sumikawa K; Taniyama K J Cell Physiol; 2007 Jan; 210(1):237-45. PubMed ID: 17013811 [TBL] [Abstract][Full Text] [Related]
13. A computational model predicts that Gβγ acts at a cleft between channel subunits to activate GIRK1 channels. Mahajan R; Ha J; Zhang M; Kawano T; Kozasa T; Logothetis DE Sci Signal; 2013 Aug; 6(288):ra69. PubMed ID: 23943609 [TBL] [Abstract][Full Text] [Related]
14. Graded contribution of the Gbeta gamma binding domains to GIRK channel activation. Sadja R; Alagem N; Reuveny E Proc Natl Acad Sci U S A; 2002 Aug; 99(16):10783-8. PubMed ID: 12124401 [TBL] [Abstract][Full Text] [Related]
15. G Protein betagamma subunits stimulate p114RhoGEF, a guanine nucleotide exchange factor for RhoA and Rac1: regulation of cell shape and reactive oxygen species production. Niu J; Profirovic J; Pan H; Vaiskunaite R; Voyno-Yasenetskaya T Circ Res; 2003 Oct; 93(9):848-56. PubMed ID: 14512443 [TBL] [Abstract][Full Text] [Related]
16. Up-regulation of GABA(B) receptor signaling by constitutive assembly with the K+ channel tetramerization domain-containing protein 12 (KCTD12). Ivankova K; Turecek R; Fritzius T; Seddik R; Prezeau L; Comps-Agrar L; Pin JP; Fakler B; Besseyrias V; Gassmann M; Bettler B J Biol Chem; 2013 Aug; 288(34):24848-56. PubMed ID: 23843457 [TBL] [Abstract][Full Text] [Related]
17. Loss of association between activated Galpha q and Gbetagamma disrupts receptor-dependent and receptor-independent signaling. Evanko DS; Thiyagarajan MM; Takida S; Wedegaertner PB Cell Signal; 2005 Oct; 17(10):1218-28. PubMed ID: 16038796 [TBL] [Abstract][Full Text] [Related]
18. NMR analyses of the Gbetagamma binding and conformational rearrangements of the cytoplasmic pore of G protein-activated inwardly rectifying potassium channel 1 (GIRK1). Yokogawa M; Osawa M; Takeuchi K; Mase Y; Shimada I J Biol Chem; 2011 Jan; 286(3):2215-23. PubMed ID: 21075842 [TBL] [Abstract][Full Text] [Related]
19. Cooperative regulation by G proteins and Na(+) of neuronal GIRK2 K(+) channels. Wang W; Touhara KK; Weir K; Bean BP; MacKinnon R Elife; 2016 Apr; 5():. PubMed ID: 27074662 [TBL] [Abstract][Full Text] [Related]
20. Pertussis-toxin-sensitive Galpha subunits selectively bind to C-terminal domain of neuronal GIRK channels: evidence for a heterotrimeric G-protein-channel complex. Clancy SM; Fowler CE; Finley M; Suen KF; Arrabit C; Berton F; Kosaza T; Casey PJ; Slesinger PA Mol Cell Neurosci; 2005 Feb; 28(2):375-89. PubMed ID: 15691717 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]