These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 24836617)

  • 1. Inactivation of Candida albicans following exposure to 624-nanometer light from a supraluminous diode array.
    Guffey JS; Payne W; James L; Qian Z; Dodson C
    Adv Skin Wound Care; 2014 Jun; 27(6):268-71. PubMed ID: 24836617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation of mycobacterium smegmatis following exposure to 405-nanometer light from a supraluminous diode array.
    Guffey JS; Payne W; James L
    Wounds; 2013 May; 25(5):131-5. PubMed ID: 25866893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of combined 405-nm and 880-nm light on Staphylococcus aureus and Pseudomonas aeruginosa in vitro.
    Guffey JS; Wilborn J
    Photomed Laser Surg; 2006 Dec; 24(6):680-3. PubMed ID: 17199465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of resistance development by Staphylococcus aureus to an in vitro, multiple stage application of 405 nm light from a supraluminous diode array.
    Guffey JS; Payne W; Jones T; Martin K
    Photomed Laser Surg; 2013 Apr; 31(4):179-82. PubMed ID: 23484587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delaying the Onset of Resistance Formation: Effect of Manipulating Dose, Wavelength, and Rate of Energy Delivery of 405-, 464-, and 850-Nanometer Light for Staphylococcus aureus.
    Guffey JS; Payne W; Martin K; Dodson C
    Wounds; 2014 Apr; 26(4):95-100. PubMed ID: 25855997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro bactericidal effects of 405-nm and 470-nm blue light.
    Guffey JS; Wilborn J
    Photomed Laser Surg; 2006 Dec; 24(6):684-8. PubMed ID: 17199466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Twice-daily red and blue light treatment for Candida albicans biofilm matrix development control.
    da Silveira PV; Panariello BHD; de Araújo Costa CAG; Maule SM; Maule SM; Janal MN; Zanin ICJ; Duarte S
    Lasers Med Sci; 2019 Apr; 34(3):441-447. PubMed ID: 30097756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lethal effects of high-intensity violet 405-nm light on Saccharomyces cerevisiae, Candida albicans, and on dormant and germinating spores of Aspergillus niger.
    Murdoch LE; McKenzie K; Maclean M; Macgregor SJ; Anderson JG
    Fungal Biol; 2013; 117(7-8):519-27. PubMed ID: 23931117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosensitization of different Candida species by low power laser light.
    de Souza SC; Junqueira JC; Balducci I; Koga-Ito CY; Munin E; Jorge AO
    J Photochem Photobiol B; 2006 Apr; 83(1):34-8. PubMed ID: 16413196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of low-level laser irradiation on the pathogenicity of Candida albicans: in vitro and in vivo study.
    Seyedmousavi S; Hashemi SJ; Rezaie S; Fateh M; Djavid GE; Zibafar E; Morsali F; Zand N; Alinaghizadeh M; Ataie-Fashtami L
    Photomed Laser Surg; 2014 Jun; 32(6):322-9. PubMed ID: 24905928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosensitization of in vitro biofilms formed on denture base resin.
    de Freitas-Pontes KM; Gomes CE; de Carvalho BM; Sabóia Rde S; Garcia BA
    J Prosthet Dent; 2014 Sep; 112(3):632-7. PubMed ID: 24607269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photodynamic fungicidal efficacy of hypericin and dimethyl methylene blue against azole-resistant Candida albicans strains.
    Paz-Cristobal MP; Royo D; Rezusta A; Andrés-Ciriano E; Alejandre MC; Meis JF; Revillo MJ; Aspiroz C; Nonell S; Gilaberte Y
    Mycoses; 2014 Jan; 57(1):35-42. PubMed ID: 23905682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible Blue Light is Capable of Inactivating Candida albicans and Other Fungal Species.
    Dai T; Hamblin MR
    Photomed Laser Surg; 2017 Jul; 35(7):345-346. PubMed ID: 28613980
    [No Abstract]   [Full Text] [Related]  

  • 14. Quinine Improves the Fungicidal Effects of Antimicrobial Blue Light: Implications for the Treatment of Cutaneous Candidiasis.
    Leanse LG; Goh XS; Dai T
    Lasers Surg Med; 2020 Jul; 52(6):569-575. PubMed ID: 31746024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blue light therapy to treat candida vaginitis with comparisons of three wavelengths: an in vitro study.
    Wang T; Dong J; Yin H; Zhang G
    Lasers Med Sci; 2020 Aug; 35(6):1329-1339. PubMed ID: 31900692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitisation of Candida albicans to killing by low-power laser light.
    Wilson M; Mia N
    J Oral Pathol Med; 1993 Sep; 22(8):354-7. PubMed ID: 7506775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of repeated low-dose UVB irradiation on the hyphal growth of Candida albicans.
    Brasch J; Kay C
    Mycoses; 2006 Jan; 49(1):1-5. PubMed ID: 16367810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative investigation of efficiency of ultraviolet and visible light in eradication of Candida albicans in vitro.
    Risović D; Maver-Bišćanin M; Mravak-Stipetić M; Bukovski S; Bišćanin A
    Photomed Laser Surg; 2014 Apr; 32(4):232-9. PubMed ID: 24697585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial blue light inactivation of Candida albicans: In vitro and in vivo studies.
    Zhang Y; Zhu Y; Chen J; Wang Y; Sherwood ME; Murray CK; Vrahas MS; Hooper DC; Hamblin MR; Dai T
    Virulence; 2016 Jul; 7(5):536-45. PubMed ID: 26909654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro effect of 5-aminolaevulinic acid plus visible light on Candida albicans.
    Monfrecola G; Procaccini EM; Bevilacqua M; Manco A; Calabro G; Santoianni P
    Photochem Photobiol Sci; 2004 May; 3(5):419-22. PubMed ID: 15122358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.