BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 24836665)

  • 21. Freezing and glass transitions upon cooling and warming and ice/freeze-concentration-solution morphology of emulsified aqueous citric acid.
    Bogdan A; Molina MJ; Tenhu H
    Eur J Pharm Biopharm; 2016 Dec; 109():49-60. PubMed ID: 27664024
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Measurement of glass transition temperatures in freeze concentrated solutions of non-electrolytes by electrical thermal analysis.
    Her LM; Jefferis RP; Gatlin LA; Braxton B; Nail SL
    Pharm Res; 1994 Jul; 11(7):1023-9. PubMed ID: 7937543
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Freeze-concentration separates proteins and polymer excipients into different amorphous phases.
    Izutsu K; Kojima S
    Pharm Res; 2000 Oct; 17(10):1316-22. PubMed ID: 11145240
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting the crystallization propensity of carboxylic acid buffers in frozen systems--relevance to freeze-drying.
    Sundaramurthi P; Suryanarayanan R
    J Pharm Sci; 2011 Apr; 100(4):1288-93. PubMed ID: 24081466
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of Excipient Interactions on the State of the Freeze-Concentrate and Protein Stability.
    Jena S; Horn J; Suryanarayanan R; Friess W; Aksan A
    Pharm Res; 2017 Feb; 34(2):462-478. PubMed ID: 27981449
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of subambient differential scanning calorimetry to monitor the frozen-state behavior of blends of excipients for freeze-drying.
    Martini A; Kume S; Crivellente M; Artico R
    PDA J Pharm Sci Technol; 1997; 51(2):62-7. PubMed ID: 9146035
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physicochemical characterization of the freezing behavior of mannitol-human serum albumin formulations.
    Hawe A; Friess W
    AAPS PharmSciTech; 2006; 7(4):94. PubMed ID: 17285745
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measurement of the kinetics of protein unfolding in viscous systems and implications for protein stability in freeze-drying.
    Tang XC; Pikal MJ
    Pharm Res; 2005 Jul; 22(7):1176-85. PubMed ID: 16028019
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigations into the stabilization of drugs by sugar glasses: III. The influence of various high-pH buffers.
    Eriksson JH; Hinrichs WL; de Jong GJ; Somsen GW; Frijlink HW
    Pharm Res; 2003 Sep; 20(9):1437-43. PubMed ID: 14567639
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous and direct determination of oxalic acid, tartaric acid, malic acid, vitamin C, citric acid, and succinic acid in Fructus mume by reversed-phase high-performance liquid chromatography.
    Zhanguo C; Jiuru L
    J Chromatogr Sci; 2002 Jan; 40(1):35-9. PubMed ID: 11866385
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phase transitions of glycine in frozen aqueous solutions and during freeze-drying.
    Pyne A; Suryanarayanan R
    Pharm Res; 2001 Oct; 18(10):1448-54. PubMed ID: 11697471
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Drug-Excipient Interactions: Effect on Molecular Mobility and Physical Stability of Ketoconazole-Organic Acid Coamorphous Systems.
    Fung MH; DeVault M; Kuwata KT; Suryanarayanan R
    Mol Pharm; 2018 Mar; 15(3):1052-1061. PubMed ID: 29309158
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cocrystallization and amorphization induced by drug-excipient interaction improves the physical properties of acyclovir.
    Masuda T; Yoshihashi Y; Yonemochi E; Fujii K; Uekusa H; Terada K
    Int J Pharm; 2012 Jan; 422(1-2):160-9. PubMed ID: 22079714
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermophysical properties of carboxylic and amino acid buffers at subzero temperatures: relevance to frozen state stabilization.
    Sundaramurthi P; Suryanarayanan R
    J Phys Chem B; 2011 Jun; 115(21):7154-64. PubMed ID: 21561117
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection of Collapse and Crystallization of Saccharide, Protein, and Mannitol Formulations by Optical Fibers in Lyophilization.
    Horn J; Friess W
    Front Chem; 2018; 6():4. PubMed ID: 29435445
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of crystallizing and non-crystallizing cosolutes on trehalose crystallization during freeze-drying.
    Sundaramurthi P; Suryanarayanan R
    Pharm Res; 2010 Nov; 27(11):2384-93. PubMed ID: 20824310
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystallization of Cyclophosphamide Monohydrate During Lyophilization.
    Munjal B; Zode SS; Bansal AK
    J Pharm Sci; 2019 Mar; 108(3):1195-1202. PubMed ID: 30352215
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of the physical stability of freeze-dried sucrose-containing formulations by differential scanning calorimetry.
    te Booy MP; de Ruiter RA; de Meere AL
    Pharm Res; 1992 Jan; 9(1):109-14. PubMed ID: 1589394
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermal analysis of tertiary butyl alcohol/sucrose/water ternary system.
    Zuo JG; Hua TC; Liu BL; Zhou GY
    Cryo Letters; 2005; 26(5):289-96. PubMed ID: 19827244
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effective use of differential scanning calorimetry in the optimisation of freeze-drying processes and formulations.
    Hatley RH
    Dev Biol Stand; 1992; 74():105-19; discussion 119-22. PubMed ID: 1592162
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.