These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24836699)

  • 1. The contributions of apoplastic, symplastic and gas phase pathways for water transport outside the bundle sheath in leaves.
    Buckley TN
    Plant Cell Environ; 2015 Jan; 38(1):7-22. PubMed ID: 24836699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tansley Review No. 22 What becomes of the transpiration stream?
    Canny MJ
    New Phytol; 1990 Mar; 114(3):341-368. PubMed ID: 33873972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Sites of Evaporation within Leaves.
    Buckley TN; John GP; Scoffoni C; Sack L
    Plant Physiol; 2017 Mar; 173(3):1763-1782. PubMed ID: 28153921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaf water stable isotopes and water transport outside the xylem.
    Barbour MM; Farquhar GD; Buckley TN
    Plant Cell Environ; 2017 Jun; 40(6):914-920. PubMed ID: 27739589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water uptake by roots: effects of water deficit.
    Steudle E
    J Exp Bot; 2000 Sep; 51(350):1531-42. PubMed ID: 11006304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bundle-sheath cell regulation of xylem-mesophyll water transport via aquaporins under drought stress: a target of xylem-borne ABA?
    Shatil-Cohen A; Attia Z; Moshelion M
    Plant J; 2011 Jul; 67(1):72-80. PubMed ID: 21401747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pearl millet (Pennisetum glaucum) contrasting for the transpiration response to vapour pressure deficit also differ in their dependence on the symplastic and apoplastic water transport pathways.
    Tharanya M; Sivasakthi K; Barzana G; Kholová J; Thirunalasundari T; Vadez V
    Funct Plant Biol; 2018 Jun; 45(7):719-736. PubMed ID: 32291047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vascular bundle sheath and mesophyll cells modulate leaf water balance in response to chitin.
    Attia Z; Dalal A; Moshelion M
    Plant J; 2020 Mar; 101(6):1368-1377. PubMed ID: 31680316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination.
    Flexas J; Scoffoni C; Gago J; Sack L
    J Exp Bot; 2013 Oct; 64(13):3965-81. PubMed ID: 24123453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leafminers help us understand leaf hydraulic design.
    Nardini A; Raimondo F; Lo Gullo MA; Salleo S
    Plant Cell Environ; 2010 Jul; 33(7):1091-100. PubMed ID: 20199625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observed relationships between leaf H218O Péclet effective length and leaf hydraulic conductance reflect assumptions in Craig-Gordon model calculations.
    Loucos KE; Simonin KA; Song X; Barbour MM
    Tree Physiol; 2015 Jan; 35(1):16-26. PubMed ID: 25576755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of variable [CO2] and temperature on water transport structure-function relationships in Eucalyptus.
    Phillips NG; Attard RD; Ghannoum O; Lewis JD; Logan BA; Tissue DT
    Tree Physiol; 2011 Sep; 31(9):945-52. PubMed ID: 21712237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How Does Leaf Anatomy Influence Water Transport outside the Xylem?
    Buckley TN; John GP; Scoffoni C; Sack L
    Plant Physiol; 2015 Aug; 168(4):1616-35. PubMed ID: 26084922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting leaf-level fluxes of O3 and NO2: the relative roles of diffusion and biochemical processes.
    Eller AS; Sparks JP
    Plant Cell Environ; 2006 Sep; 29(9):1742-50. PubMed ID: 16913863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-steady-state, non-uniform transpiration rate and leaf anatomy effects on the progressive stable isotope enrichment of leaf water along monocot leaves.
    Ogée J; Cuntz M; Peylin P; Bariac T
    Plant Cell Environ; 2007 Apr; 30(4):367-87. PubMed ID: 17324225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two sides to every leaf: water and CO
    Drake PL; de Boer HJ; Schymanski SJ; Veneklaas EJ
    New Phytol; 2019 May; 222(3):1179-1187. PubMed ID: 30570766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altitudinal changes in leaf hydraulic conductance across five Rhododendron species in eastern Nepal.
    Taneda H; Kandel DR; Ishida A; Ikeda H
    Tree Physiol; 2016 Oct; 36(10):1272-1282. PubMed ID: 27417514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The apoplastic pH of the substomatal cavity of Vicia faba leaves and its regulation responding to different stress factors.
    Felle HH; Hanstein S
    J Exp Bot; 2002 Jan; 53(366):73-82. PubMed ID: 11741043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bundle sheath lignification mediates the linkage of leaf hydraulics and venation.
    Ohtsuka A; Sack L; Taneda H
    Plant Cell Environ; 2018 Feb; 41(2):342-353. PubMed ID: 29044569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of transpiration and metabolism in translocation and accumulation of cadmium in tobacco plants (Nicotiana tabacum L.).
    Liu H; Wang H; Ma Y; Wang H; Shi Y
    Chemosphere; 2016 Feb; 144():1960-5. PubMed ID: 26547876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.