BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

488 related articles for article (PubMed ID: 24836951)

  • 21. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.
    Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A
    Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering.
    Lutolf MP; Hubbell JA
    Nat Biotechnol; 2005 Jan; 23(1):47-55. PubMed ID: 15637621
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein-polymer conjugates for forming photopolymerizable biomimetic hydrogels for tissue engineering.
    Gonen-Wadmany M; Oss-Ronen L; Seliktar D
    Biomaterials; 2007 Sep; 28(26):3876-86. PubMed ID: 17576008
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineered tropoelastin and elastin-based biomaterials.
    Wise SG; Mithieux SM; Weiss AS
    Adv Protein Chem Struct Biol; 2009; 78():1-24. PubMed ID: 20663482
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design and production of a chimeric resilin-, elastin-, and collagen-like engineered polypeptide.
    Bracalello A; Santopietro V; Vassalli M; Marletta G; Del Gaudio R; Bochicchio B; Pepe A
    Biomacromolecules; 2011 Aug; 12(8):2957-65. PubMed ID: 21707089
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Elastic, silk-cardiac extracellular matrix hydrogels exhibit time-dependent stiffening that modulates cardiac fibroblast response.
    Stoppel WL; Gao AE; Greaney AM; Partlow BP; Bretherton RC; Kaplan DL; Black LD
    J Biomed Mater Res A; 2016 Dec; 104(12):3058-3072. PubMed ID: 27480328
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A hybrid silk/RADA-based fibrous scaffold with triple hierarchy for ligament regeneration.
    Chen K; Sahoo S; He P; Ng KS; Toh SL; Goh JC
    Tissue Eng Part A; 2012 Jul; 18(13-14):1399-409. PubMed ID: 22429111
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Förster Resonance Energy Transfer-Paired Hydrogel Forming Silk-Elastin-Like Recombinamers by Recombinant Conjugation of Fluorescent Proteins.
    Ibáñez-Fonseca A; Alonso M; Arias FJ; Rodríguez-Cabello JC
    Bioconjug Chem; 2017 Mar; 28(3):828-835. PubMed ID: 28158945
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elastin Biomaterials in Dermal Repair.
    Wen Q; Mithieux SM; Weiss AS
    Trends Biotechnol; 2020 Mar; 38(3):280-291. PubMed ID: 31870589
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real time responses of fibroblasts to plastically compressed fibrillar collagen hydrogels.
    Ghezzi CE; Muja N; Marelli B; Nazhat SN
    Biomaterials; 2011 Jul; 32(21):4761-72. PubMed ID: 21514662
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrogels from feather keratin show higher viscoelastic properties and cell proliferation than those from hair and wool keratins.
    Esparza Y; Bandara N; Ullah A; Wu J
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():446-453. PubMed ID: 29853111
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Natural Fibrous Protein for Advanced Tissue Engineering Applications: Focusing on Silk Fibroin and Keratin.
    Yang Y; Chen J; Migliaresi C; Motta A
    Adv Exp Med Biol; 2020; 1249():39-49. PubMed ID: 32602089
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Porous alginate hydrogel functionalized with virus as three-dimensional scaffolds for bone differentiation.
    Luckanagul J; Lee LA; Nguyen QL; Sitasuwan P; Yang X; Shazly T; Wang Q
    Biomacromolecules; 2012 Dec; 13(12):3949-58. PubMed ID: 23148483
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tunable Keratin Hydrogels for Controlled Erosion and Growth Factor Delivery.
    Ham TR; Lee RT; Han S; Haque S; Vodovotz Y; Gu J; Burnett LR; Tomblyn S; Saul JM
    Biomacromolecules; 2016 Jan; 17(1):225-36. PubMed ID: 26636618
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-assembled monolayers and nanocomposite hydrogels of functional nanomaterials for tissue engineering applications.
    Kehr NS; Atay S; Ergün B
    Macromol Biosci; 2015 Apr; 15(4):445-63. PubMed ID: 25515073
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reverse-engineered silk hydrogels for cell and drug delivery.
    Seib FP
    Ther Deliv; 2018 May; 9(6):469-487. PubMed ID: 29722634
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds.
    Li M; Mondrinos MJ; Chen X; Gandhi MR; Ko FK; Lelkes PI
    J Biomed Mater Res A; 2006 Dec; 79(4):963-73. PubMed ID: 16948146
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent strategies to develop polysaccharide-based nanomaterials for biomedical applications.
    Wen Y; Oh JK
    Macromol Rapid Commun; 2014 Nov; 35(21):1819-32. PubMed ID: 25283788
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Laccase-mediated formation of hydrogels based on silk-elastin-like protein polymers with ultra-high molecular weight.
    Wang S; Huang W; Feng Z; Tian X; Wang D; Rao L; Tan M; Roongsawang N; Song H; Jiang W; Bai W
    Int J Biol Macromol; 2023 Mar; 231():123239. PubMed ID: 36641025
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Silk protein fiber biomaterials and tissue engineering].
    Huang JK; Li M
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2004 Mar; 18(2):127-30. PubMed ID: 15065413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.