These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 24837288)

  • 21. Amino acids are key substrates to Escherichia coli BW25113 for achieving high specific growth rate.
    Maser A; Peebo K; Vilu R; Nahku R
    Res Microbiol; 2020; 171(5-6):185-193. PubMed ID: 32057959
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of isocitrate lyase and the glyoxylate cycle in Escherichia coli growing under glucose limitation.
    Prasad Maharjan R; Yu PL; Seeto S; Ferenci T
    Res Microbiol; 2005 Mar; 156(2):178-83. PubMed ID: 15748982
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of amino acids on transcription and translation of key genes in E. coli K and B grown at a steady state in minimal medium.
    Baez A; Kumar A; Sharma AK; Anderson ED; Shiloach J
    N Biotechnol; 2019 Mar; 49():120-128. PubMed ID: 30385399
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The pyruvate-tricarboxylic acid cycle node: a focal point of virulence control in the enteric pathogen Yersinia pseudotuberculosis.
    Bücker R; Heroven AK; Becker J; Dersch P; Wittmann C
    J Biol Chem; 2014 Oct; 289(43):30114-32. PubMed ID: 25164818
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptation of central metabolite pools to variations in growth rate and cultivation conditions in Saccharomyces cerevisiae.
    Kumar K; Venkatraman V; Bruheim P
    Microb Cell Fact; 2021 Mar; 20(1):64. PubMed ID: 33750414
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Topology of the global regulatory network of carbon limitation in Escherichia coli.
    Hardiman T; Lemuth K; Keller MA; Reuss M; Siemann-Herzberg M
    J Biotechnol; 2007 Dec; 132(4):359-74. PubMed ID: 17913275
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Is energy excess the initial trigger of carbon overflow metabolism? Transcriptional network response of carbon-limited Escherichia coli to transient carbon excess.
    Li Z; Nees M; Bettenbrock K; Rinas U
    Microb Cell Fact; 2022 Apr; 21(1):67. PubMed ID: 35449049
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptional regulation of main metabolic pathways of cyoA, cydB, fnr, and fur gene knockout Escherichia coli in C-limited and N-limited aerobic continuous cultures.
    Kumar R; Shimizu K
    Microb Cell Fact; 2011 Jan; 10():3. PubMed ID: 21272324
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proteome analyses of Staphylococcus aureus in growing and non-growing cells: a physiological approach.
    Kohler C; Wolff S; Albrecht D; Fuchs S; Becher D; Büttner K; Engelmann S; Hecker M
    Int J Med Microbiol; 2005 Dec; 295(8):547-65. PubMed ID: 16325551
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of CcpA in regulation of the central pathways of carbon catabolism in Bacillus subtilis.
    Tobisch S; Zühlke D; Bernhardt J; Stülke J; Hecker M
    J Bacteriol; 1999 Nov; 181(22):6996-7004. PubMed ID: 10559165
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New insights on transcriptional responses of genes involved in carbon central metabolism, respiration and fermentation to low ATP levels in Escherichia coli.
    Soria S; de Anda R; Flores N; Romero-Garcia S; Gosset G; Bolívar F; Báez-Viveros JL
    J Basic Microbiol; 2013 Apr; 53(4):365-80. PubMed ID: 22914992
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation.
    Veit A; Polen T; Wendisch VF
    Appl Microbiol Biotechnol; 2007 Feb; 74(2):406-21. PubMed ID: 17273855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aerobic expression of Vitreoscilla hemoglobin efficiently reduces overflow metabolism in Escherichia coli.
    Pablos TE; Sigala JC; Le Borgne S; Lara AR
    Biotechnol J; 2014 Jun; 9(6):791-9. PubMed ID: 24677798
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative Physiology of Non-Energy-Limited Retentostat Cultures of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates.
    Liu Y; El Masoudi A; Pronk JT; van Gulik WM
    Appl Environ Microbiol; 2019 Oct; 85(20):. PubMed ID: 31375494
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A proteomic view of cell physiology of Bacillus licheniformis.
    Voigt B; Schweder T; Becher D; Ehrenreich A; Gottschalk G; Feesche J; Maurer KH; Hecker M
    Proteomics; 2004 May; 4(5):1465-90. PubMed ID: 15188415
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comprehensive Analysis of Proteomic Differences between
    Han MJ
    J Microbiol Biotechnol; 2017 Nov; 27(11):2028-2036. PubMed ID: 28870009
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Global metabolic regulation analysis for Escherichia coli K12 based on protein expression by 2-dimensional electrophoresis and enzyme activity measurement.
    Peng L; Shimizu K
    Appl Microbiol Biotechnol; 2003 Apr; 61(2):163-78. PubMed ID: 12655459
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extracellular Acidic pH Inhibits Acetate Consumption by Decreasing Gene Transcription of the Tricarboxylic Acid Cycle and the Glyoxylate Shunt.
    Orr JS; Christensen DG; Wolfe AJ; Rao CV
    J Bacteriol; 2019 Jan; 201(2):. PubMed ID: 30348831
    [No Abstract]   [Full Text] [Related]  

  • 39. The Physiological and Molecular Characterization of a Small Colony Variant of Escherichia coli and Its Phenotypic Rescue.
    Santos V; Hirshfield I
    PLoS One; 2016; 11(6):e0157578. PubMed ID: 27310825
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genomewide Stabilization of mRNA during a "Feast-to-Famine" Growth Transition in Escherichia coli.
    Morin M; Enjalbert B; Ropers D; Girbal L; Cocaign-Bousquet M
    mSphere; 2020 May; 5(3):. PubMed ID: 32434841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.