These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 24837392)

  • 21. Syntrophic acetate oxidation under thermophilic methanogenic condition in Chinese paddy field soil.
    Rui J; Qiu Q; Lu Y
    FEMS Microbiol Ecol; 2011 Aug; 77(2):264-73. PubMed ID: 21470253
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon-dependent control of electron transfer and central carbon pathway genes for methane biosynthesis in the Archaean, Methanosarcina acetivorans strain C2A.
    Rohlin L; Gunsalus RP
    BMC Microbiol; 2010 Feb; 10():62. PubMed ID: 20178638
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cysteine-Accelerated Methanogenic Propionate Degradation in Paddy Soil Enrichment.
    Zhuang L; Ma J; Tang J; Tang Z; Zhou S
    Microb Ecol; 2017 May; 73(4):916-924. PubMed ID: 27815590
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments.
    Li H; Chang J; Liu P; Fu L; Ding D; Lu Y
    Environ Microbiol; 2015 May; 17(5):1533-47. PubMed ID: 25059331
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Organization and growth phase-dependent transcription of methane genes in two regions of the Methanobacterium thermoautotrophicum genome.
    Nölling J; Pihl TD; Vriesema A; Reeve JN
    J Bacteriol; 1995 May; 177(9):2460-8. PubMed ID: 7730278
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relationship of formate to growth and methanogenesis by Methanococcus thermolithotrophicus.
    Belay N; Sparling R; Daniels L
    Appl Environ Microbiol; 1986 Nov; 52(5):1080-5. PubMed ID: 3098165
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Syntrophic oxidation of propionate in rice field soil at 15 and 30°C under methanogenic conditions.
    Gan Y; Qiu Q; Liu P; Rui J; Lu Y
    Appl Environ Microbiol; 2012 Jul; 78(14):4923-32. PubMed ID: 22582054
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The genome characteristics and predicted function of methyl-group oxidation pathway in the obligate aceticlastic methanogens, Methanosaeta spp.
    Zhu J; Zheng H; Ai G; Zhang G; Liu D; Liu X; Dong X
    PLoS One; 2012; 7(5):e36756. PubMed ID: 22590603
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Responses of methanogen mcrA genes and their transcripts to an alternate dry/wet cycle of paddy field soil.
    Ma K; Conrad R; Lu Y
    Appl Environ Microbiol; 2012 Jan; 78(2):445-54. PubMed ID: 22101043
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Methyl-coenzyme M reductase and other enzymes involved in methanogenesis from CO2 and H2 in the extreme thermophile Methanopyrus kandleri.
    Rospert S; Breitung J; Ma K; Schwörer B; Zirngibl C; Thauer RK; Linder D; Huber R; Stetter KO
    Arch Microbiol; 1991; 156(1):49-55. PubMed ID: 1772346
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metatranscriptomics reveals a differential temperature effect on the structural and functional organization of the anaerobic food web in rice field soil.
    Peng J; Wegner CE; Bei Q; Liu P; Liesack W
    Microbiome; 2018 Sep; 6(1):169. PubMed ID: 30231929
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Methane emission and dynamics of methanotrophic and methanogenic communities in a flooded rice field ecosystem.
    Lee HJ; Kim SY; Kim PJ; Madsen EL; Jeon CO
    FEMS Microbiol Ecol; 2014 Apr; 88(1):195-212. PubMed ID: 24410836
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of tungsten and molybdenum on growth of a syntrophic coculture of Syntrophobacter fumaroxidans and Methanospirillum hungatei.
    Plugge CM; Jiang B; de Bok FA; Tsai C; Stams AJ
    Arch Microbiol; 2009 Jan; 191(1):55-61. PubMed ID: 18795263
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Methane production and methanogenic archaeal communities in two types of paddy soil amended with different amounts of rice straw.
    Bao QL; Xiao KQ; Chen Z; Yao HY; Zhu YG
    FEMS Microbiol Ecol; 2014 May; 88(2):372-85. PubMed ID: 24579928
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermoanaerobacteriaceae oxidize acetate in methanogenic rice field soil at 50°C.
    Liu F; Conrad R
    Environ Microbiol; 2010 Aug; 12(8):2341-54. PubMed ID: 21966924
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metagenome changes in the biogas producing community during anaerobic digestion of rice straw.
    Pore SD; Shetty D; Arora P; Maheshwari S; Dhakephalkar PK
    Bioresour Technol; 2016 Aug; 213():50-53. PubMed ID: 27025191
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physiological role of the F420-non-reducing hydrogenase (Mvh) from Methanothermobacter marburgensis.
    Stojanowic A; Mander GJ; Duin EC; Hedderich R
    Arch Microbiol; 2003 Sep; 180(3):194-203. PubMed ID: 12856108
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biochemical evidence for formate transfer in syntrophic propionate-oxidizing cocultures of Syntrophobacter fumaroxidans and Methanospirillum hungatei.
    de Bok FA; Luijten ML; Stams AJ
    Appl Environ Microbiol; 2002 Sep; 68(9):4247-52. PubMed ID: 12200272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Syntrophic-archaeal associations in a nutrient-impacted freshwater marsh.
    Chauhan A; Reddy KR; Ogram AV
    J Appl Microbiol; 2006; 100(1):73-84. PubMed ID: 16405687
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Several ways one goal-methanogenesis from unconventional substrates.
    Kurth JM; Op den Camp HJM; Welte CU
    Appl Microbiol Biotechnol; 2020 Aug; 104(16):6839-6854. PubMed ID: 32542472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.