These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 24837441)

  • 1. A quasi-classical trajectory study of the OH + SO reaction: the role of ro-vibrational energy.
    Pires WA; Garrido JD; Nascimento MA; Ballester MY
    Phys Chem Chem Phys; 2014 Jul; 16(25):12793-801. PubMed ID: 24837441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quasiclassical trajectory study of the OH+SO reaction: The role of rotational energy.
    Ballester MY; Orozco-Gonzalez Y; Garrido JD; Dos Santos HF
    J Chem Phys; 2010 Jan; 132(4):044310. PubMed ID: 20113036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of reactant rotational excitation on H + O2--> OH + O reaction rate constant: quantum wave packet, quasi-classical trajectory and phase space theory calculations.
    Lin SY; Guo H; Lendvay G; Xie D
    Phys Chem Chem Phys; 2009 Jun; 11(23):4715-21. PubMed ID: 19492124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasi-Classical Trajectory Study of NH(
    de Castro DG; Poveda LA; Crispim LWS; Ballester MY
    J Phys Chem A; 2019 Oct; 123(42):9113-9122. PubMed ID: 31573199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross sections and rate constants for OH + H2 reaction on three different potential energy surfaces for ro-vibrationally excited reagents.
    Bhattacharya S; Panda AN; Meyer HD
    J Chem Phys; 2011 Nov; 135(19):194302. PubMed ID: 22112077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and dynamics of the NH3 + H → NH2 + H2 reaction using transition state methods, quasi-classical trajectories, and quantum-mechanical scattering.
    Corchado JC; Espinosa-Garcia J; Yang M
    J Chem Phys; 2011 Jul; 135(1):014303. PubMed ID: 21744898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quasi-classical trajectory study of the S + OH → SO + H reaction: from reaction probability to thermal rate constant.
    Jorfi M; Honvault P
    Phys Chem Chem Phys; 2011 May; 13(18):8414-21. PubMed ID: 21331406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of reagent rotation and vibration on H + OH (υ, j)→ O + H2.
    Li X; Arasa C; van Hemert MC; van Dishoeck EF
    J Phys Chem A; 2013 Dec; 117(48):12889-96. PubMed ID: 24195494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of vibrational and translational energy in the OH + NH3 reaction: a quasi-classical trajectory study.
    Monge-Palacios M; Espinosa-Garcia J
    J Phys Chem A; 2013 Jun; 117(24):5042-51. PubMed ID: 23721321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical reaction versus vibrational quenching in low energy collisions of vibrationally excited OH with O.
    Pradhan GB; Juanes-Marcos JC; Balakrishnan N; Kendrick BK
    J Chem Phys; 2013 Nov; 139(19):194305. PubMed ID: 24320324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adiabatic quantum dynamics of CH(X2Π) + H(2S) reactions on the CH2(X̃3A″) surface and role of the excited electronic states.
    Gamallo P; Defazio P; Akpinar S; Petrongolo C
    J Phys Chem A; 2012 Aug; 116(32):8291-6. PubMed ID: 22817398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quasiclassical trajectory simulations of OH(v) + NO2 --> HONO2* --> OH(v') + NO2: capture and vibrational deactivation rate constants.
    Liu Y; Lohr LL; Barker JR
    J Phys Chem A; 2006 Feb; 110(4):1267-77. PubMed ID: 16435787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultracold collisions and reactions of vibrationally excited OH radicals with oxygen atoms.
    Juanes-Marcos JC; Quéméner G; Kendrick BK; Balakrishnan N
    Phys Chem Chem Phys; 2011 Nov; 13(42):19067-76. PubMed ID: 21674116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dynamics of the H(+) + D(2) reaction: a comparison of quantum mechanical wavepacket, quasi-classical and statistical-quasi-classical results.
    Jambrina PG; Aoiz FJ; Bulut N; Smith SC; Balint-Kurti GG; Hankel M
    Phys Chem Chem Phys; 2010 Feb; 12(5):1102-15. PubMed ID: 20094675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasi-classical trajectory calculations analyzing the reactivity and dynamics of asymmetric stretch mode excitations of methane in the H + CH4 reaction.
    Rangel C; Corchado JC; Espinosa-García J
    J Phys Chem A; 2006 Sep; 110(35):10375-83. PubMed ID: 16942042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classical dynamics of state-resolved hyperthermal O((3)P) + H2O((1)A1) collisions.
    Braunstein M; Conforti PF
    J Chem Phys; 2013 Feb; 138(7):074303. PubMed ID: 23445005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of the reactions of muonium and deuterium atoms with vibrationally excited hydrogen molecules: tunneling and vibrational adiabaticity.
    Jambrina PG; García E; Herrero VJ; Sáez-Rábanos V; Aoiz FJ
    Phys Chem Chem Phys; 2012 Nov; 14(42):14596-604. PubMed ID: 23019575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. State-to-state quantum dynamics calculations of the C + OH reaction on the second excited potential energy surface.
    Jorfi M; Honvault P
    J Phys Chem A; 2011 Aug; 115(32):8791-6. PubMed ID: 21761901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum dynamics study of the Cl + CH4 → HCl + CH3 reaction: reactive resonance, vibrational excitation reactivity, and rate constants.
    Meng F; Yan W; Wang D
    Phys Chem Chem Phys; 2012 Oct; 14(39):13656-62. PubMed ID: 22964797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate time dependent wave packet calculations for the N + OH reaction.
    Bulut N; Roncero O; Jorfi M; Honvault P
    J Chem Phys; 2011 Sep; 135(10):104307. PubMed ID: 21932893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.