BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 24837498)

  • 1. Boosting sensitivity of boron nitride nanotube (BNNT) to nitrogen dioxide by Fe encapsulation.
    Zhang YQ; Liu YJ; Liu YL; Zhao JX
    J Mol Graph Model; 2014 Jun; 51():1-6. PubMed ID: 24837498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical study of the adsorption of pentachlorophenol on the pristine and Fe-doped boron nitride nanotubes.
    Wang RX; Zhang DJ; Zhu RX; Liu CB
    J Mol Model; 2014 Feb; 20(2):2093. PubMed ID: 24504454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study on the encapsulation of Pd3-based transition metal clusters inside boron nitride nanotubes.
    Wang Q; Liu YJ; Zhao JX
    J Mol Model; 2013 Mar; 19(3):1143-51. PubMed ID: 23149764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boron nitride nanotube as a delivery system for platinum drugs: Drug encapsulation and diffusion coefficient prediction.
    Khatti Z; Hashemianzadeh SM
    Eur J Pharm Sci; 2016 Jun; 88():291-7. PubMed ID: 27084121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of O2 and H2O adsorbates on field-emission properties of an (8, 0) boron nitride nanotube: a density functional theory study.
    Zhao JX; Ding YH
    Nanotechnology; 2009 Feb; 20(8):085704. PubMed ID: 19417465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical study of physisorption of nucleobases on boron nitride nanotubes: a new class of hybrid nano-biomaterials.
    Mukhopadhyay S; Gowtham S; Scheicher RH; Pandey R; Karna SP
    Nanotechnology; 2010 Apr; 21(16):165703. PubMed ID: 20351402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical study on surface modification of BN nanotubes With 1, 2-diaminobenzenes.
    Peyghan AA; Bagheri Z
    Acta Chim Slov; 2013; 60(4):743-9. PubMed ID: 24362976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption properties of nitrogen dioxide on hybrid carbon and boron-nitride nanotubes.
    Liu H; Turner CH
    Phys Chem Chem Phys; 2014 Nov; 16(41):22853-60. PubMed ID: 25242148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum study of boron nitride nanotubes functionalized with anticancer molecules.
    Duverger E; Gharbi T; Delabrousse E; Picaud F
    Phys Chem Chem Phys; 2014 Sep; 16(34):18425-32. PubMed ID: 25070038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen adsorption on carbon-doped boron nitride nanotube.
    Baierle RJ; Piquini P; Schmidt TM; Fazzio A
    J Phys Chem B; 2006 Oct; 110(42):21184-8. PubMed ID: 17048943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A theoretical study of silicon-doped boron nitride nanotubes serving as a potential chemical sensor for hydrogen cyanide.
    Wang R; Zhang D; Liu Y; Liu C
    Nanotechnology; 2009 Dec; 20(50):505704. PubMed ID: 19923655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can trans-polyacetylene be formed on single-walled carbon-doped boron nitride nanotubes?
    Chen Y; Wang HX; Zhao JX; Cai QH; Wang XG; Wang XZ
    J Mol Model; 2012 Jul; 18(7):3415-25. PubMed ID: 22271098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective adsorption and dissociation of NO, NO
    Hassanpour A; Kamel M; Ebrahimiasl S; Ebadi AG; Arshadi S; Ghulinezhad Ahangari Z
    J Mol Model; 2021 Dec; 28(1):6. PubMed ID: 34889992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative prediction of binding affinity of Hydroxyurea anti-cancer to boron nitride and carbon nanotubes as smart targeted drug delivery vehicles.
    Mortazavifar A; Raissi H; Shahabi M
    J Biomol Struct Dyn; 2019 Nov; 37(18):4852-4862. PubMed ID: 30721644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water phase transition induced by a Stone-Wales defect in a boron nitride nanotube.
    Won CY; Aluru NR
    J Am Chem Soc; 2008 Oct; 130(41):13649-52. PubMed ID: 18803384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel properties of boron nitride nanotubes encapsulated with Fe, Co, and Ni nanoclusters.
    Ghosh S; Nigam S; Das GP; Majumdar C
    J Chem Phys; 2010 Apr; 132(16):164704. PubMed ID: 20441302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. α-Helical Antimicrobial Peptide Encapsulation and Release from Boron Nitride Nanotubes: A Computational Study.
    Zarghami Dehaghani M; Yousefi F; Bagheri B; Seidi F; Hamed Mashhadzadeh A; Rabiee N; Zarrintaj P; Mostafavi E; Saeb MR; Kim YC
    Int J Nanomedicine; 2021; 16():4277-4288. PubMed ID: 34194228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical Encapsulation of Fluorouracil (5-FU) Anti-Cancer Chemotherapy Drug into Carbon Nanotubes (CNT) and Boron Nitride Nanotubes (BNNT).
    Zarghami Dehaghani M; Yousefi F; Sajadi SM; Tajammal Munir M; Abida O; Habibzadeh S; Mashhadzadeh AH; Rabiee N; Mostafavi E; Saeb MR
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DFT study of the adsorption of 2,3,7,8-tetrachlorodibenzo-p-dioxin on pristine and Ni-doped boron nitride nanotubes.
    Wang R; Zhang D; Liu C
    Chemosphere; 2017 Feb; 168():18-24. PubMed ID: 27776234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Encapsulation capacity and natural payload delivery of an anticancer drug from boron nitride nanotube.
    El Khalifi M; Bentin J; Duverger E; Gharbi T; Boulahdour H; Picaud F
    Phys Chem Chem Phys; 2016 Sep; 18(36):24994-25001. PubMed ID: 27711377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.