BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 24837630)

  • 21. In vivo optical imaging of acute myeloid leukemia by green fluorescent protein: time-domain autofluorescence decoupling, fluorophore quantification, and localization.
    McCormack E; Micklem DR; Pindard LE; Silden E; Gallant P; Belenkov A; Lorens JB; Gjertsen BT
    Mol Imaging; 2007; 6(3):193-204. PubMed ID: 17532885
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative Assessment of Nanoparticle Biodistribution by Fluorescence Imaging, Revisited.
    Meng F; Wang J; Ping Q; Yeo Y
    ACS Nano; 2018 Jul; 12(7):6458-6468. PubMed ID: 29920064
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Imaging tumor angiogenesis with fluorescent proteins.
    Hoffman RM
    APMIS; 2004; 112(7-8):441-9. PubMed ID: 15563308
    [TBL] [Abstract][Full Text] [Related]  

  • 24.
    Kim H; Kim K; Son SH; Choi JY; Lee KH; Kim BT; Byun Y; Choe YS
    ACS Chem Neurosci; 2019 Mar; 10(3):1445-1451. PubMed ID: 30592412
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The second window ICG technique demonstrates a broad plateau period for near infrared fluorescence tumor contrast in glioblastoma.
    Zeh R; Sheikh S; Xia L; Pierce J; Newton A; Predina J; Cho S; Nasrallah M; Singhal S; Dorsey J; Lee JYK
    PLoS One; 2017; 12(7):e0182034. PubMed ID: 28738091
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Magnetic targeting of nanometric magnetic fluid loaded liposomes to specific brain intravascular areas: a dynamic imaging study in mice.
    Rivière C; Martina MS; Tomita Y; Wilhelm C; Tran Dinh A; Ménager C; Pinard E; Lesieur S; Gazeau F; Seylaz J
    Radiology; 2007 Aug; 244(2):439-48. PubMed ID: 17562813
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analytical method for the fast time-domain reconstruction of fluorescent inclusions in vitro and in vivo.
    Han SH; Farshchi-Heydari S; Hall DJ
    Biophys J; 2010 Jan; 98(2):350-7. PubMed ID: 20338857
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cytotoxicity and Selectivity in Skin Cancer by SapC-DOPS Nanovesicles.
    Abu-Baker S; Chu Z; Stevens AM; Li J; Qi X
    J Cancer Ther; 2012 Aug; 3(4):321-326. PubMed ID: 25485166
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of four affibody-based near-infrared fluorescent probes for optical imaging of epidermal growth factor receptor positive tumors.
    Qi S; Miao Z; Liu H; Xu Y; Feng Y; Cheng Z
    Bioconjug Chem; 2012 Jun; 23(6):1149-56. PubMed ID: 22621238
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorescent nanoparticle uptake for brain tumor visualization.
    Tréhin R; Figueiredo JL; Pittet MJ; Weissleder R; Josephson L; Mahmood U
    Neoplasia; 2006 Apr; 8(4):302-11. PubMed ID: 16756722
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Near infrared fluorescent imaging of brain tumor with IR780 dye incorporated phospholipid nanoparticles.
    Li S; Johnson J; Peck A; Xie Q
    J Transl Med; 2017 Jan; 15(1):18. PubMed ID: 28114956
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Saposin C: neuronal effect and CNS delivery by liposomes.
    Chu Z; Sun Y; Kuan CY; Grabowski GA; Qi X
    Ann N Y Acad Sci; 2005 Aug; 1053():237-46. PubMed ID: 16179529
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of PEGylated peptide probes conjugated with (18)F-labeled BODIPY for PET/optical imaging of MT1-MMP activity.
    Kondo N; Temma T; Deguchi J; Sano K; Ono M; Saji H
    J Control Release; 2015 Dec; 220(Pt A):476-483. PubMed ID: 26578437
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structurally symmetric near-infrared fluorophore IRDye78-protein complex enables multimodal cancer imaging.
    Yang J; Zhao C; Lim J; Zhao L; Tourneau RL; Zhang Q; Dobson D; Joshi S; Pang J; Zhang X; Pal S; Andreou C; Zhang H; Kircher MF; Schmitthenner H
    Theranostics; 2021; 11(6):2534-2549. PubMed ID: 33456558
    [No Abstract]   [Full Text] [Related]  

  • 35. Optical imaging of experimental arthritis using allogeneic leukocytes labeled with a near-infrared fluorescent probe.
    Simon GH; Daldrup-Link HE; Kau J; Metz S; Schlegel J; Piontek G; Saborowski O; Demos S; Duyster J; Pichler BJ
    Eur J Nucl Med Mol Imaging; 2006 Sep; 33(9):998-1006. PubMed ID: 16770602
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of two tricarbocyanine-based dyes for fluorescence optical imaging.
    Perlitz C; Licha K; Scholle FD; Ebert B; Bahner M; Hauff P; Moesta KT; Schirner M
    J Fluoresc; 2005 May; 15(3):443-54. PubMed ID: 15986163
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases.
    Yang M; Baranov E; Jiang P; Sun FX; Li XM; Li L; Hasegawa S; Bouvet M; Al-Tuwaijri M; Chishima T; Shimada H; Moossa AR; Penman S; Hoffman RM
    Proc Natl Acad Sci U S A; 2000 Feb; 97(3):1206-11. PubMed ID: 10655509
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detection of Subclinical Arthritis in Mice by a Thrombin Receptor-Derived Imaging Agent.
    Friedman B; Whitney MA; Savariar EN; Caneda C; Steinbach P; Xiong Q; Hingorani DV; Crisp J; Adams SR; Kenner M; Lippert CN; Nguyen QT; Guma M; Tsien RY; Corr M
    Arthritis Rheumatol; 2018 Jan; 70(1):69-79. PubMed ID: 29164814
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-color palette of fluorescent proteins for imaging the tumor microenvironment of orthotopic tumorgraft mouse models of clinical pancreatic cancer specimens.
    Suetsugu A; Katz M; Fleming J; Truty M; Thomas R; Moriwaki H; Bouvet M; Saji S; Hoffman RM
    J Cell Biochem; 2012 Jul; 113(7):2290-5. PubMed ID: 22573550
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DOT corrected fluorescence molecular tomography using targeted contrast agents for small animal tumor imaging.
    Tan Y; Cao Z; Sajja HK; Lipowska M; Wang YA; Yang L; Jiang H
    J Xray Sci Technol; 2013; 21(1):43-52. PubMed ID: 23507851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.