These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 24837923)

  • 21. RNA splicing modulates the postharvest physiological deterioration of cassava storage root.
    Gu J; Ma X; Ma Q; Xia Z; Lin Y; Yuan J; Li Y; Li C; Chen Y; Wang W; Zhang P; Wang ZY
    Plant Physiol; 2024 Apr; ():. PubMed ID: 38635971
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of boiling and frying on the bioaccessibility of beta-carotene in yellow-fleshed cassava roots (Manihot esculenta Crantz cv. BRS Jari).
    Gomes S; Torres AG; Godoy R; Pacheco S; Carvalho J; Nutti M
    Food Nutr Bull; 2013 Mar; 34(1):65-74. PubMed ID: 23767282
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in scopoletin concentration in cassava chips from four varieties during storage.
    Gnonlonfin BG; Gbaguidi F; Gbenou JD; Sanni A; Brimer L
    J Sci Food Agric; 2011 Oct; 91(13):2344-7. PubMed ID: 21604276
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Capturing Biochemical Diversity in Cassava ( Manihot esculenta Crantz) through the Application of Metabolite Profiling.
    Drapal M; Barros de Carvalho E; Ovalle Rivera TM; Becerra Lopez-Lavalle LA; Fraser PD
    J Agric Food Chem; 2019 Jan; 67(3):986-993. PubMed ID: 30557498
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lysozyme inhibits postharvest physiological deterioration of cassava.
    Wu X; Xu J; Ma Q; Ahmed S; Lu X; Ling E; Zhang P
    J Integr Plant Biol; 2022 Mar; 64(3):621-624. PubMed ID: 35195347
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Food safety: importance of composition for assessing genetically modified cassava (Manihot esculenta Crantz).
    van Rijssen FW; Morris EJ; Eloff JN
    J Agric Food Chem; 2013 Sep; 61(35):8333-9. PubMed ID: 23899040
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative Proteome Analysis of the Tuberous Roots of Six Cassava (Manihot esculenta) Varieties Reveals Proteins Related to Phenotypic Traits.
    Schmitz GJ; de Magalhães Andrade J; Valle TL; Labate CA; do Nascimento JR
    J Agric Food Chem; 2016 Apr; 64(16):3293-301. PubMed ID: 26982619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Current knowledge and future research perspectives on cassava (Manihot esculenta Crantz) chemical defenses: An agroecological view.
    Pinto-Zevallos DM; Pareja M; Ambrogi BG
    Phytochemistry; 2016 Oct; 130():10-21. PubMed ID: 27316676
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cassava shrunken-2 homolog MeAPL3 determines storage root starch and dry matter content and modulates storage root postharvest physiological deterioration.
    Beyene G; Chauhan RD; Gehan J; Siritunga D; Taylor N
    Plant Mol Biol; 2022 Jun; 109(3):283-299. PubMed ID: 32270429
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amarelinha do Amapá: a carotenoid-rich cassava cultivar.
    Nassar NM; Fernandes PC; Melani RD; Pires OR
    Genet Mol Res; 2009 Aug; 8(3):1051-5. PubMed ID: 19731202
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cassava postharvest physiological deterioration: a complex phenomenon involving calcium signaling, reactive oxygen species and programmed cell death.
    Djabou ASM; Carvalho LJCB; Li QX; Niemenak N; Chen S
    Acta Physiol Plant; 2017; 39(4):91. PubMed ID: 28316353
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid analysis of hydrogen cyanide in fresh cassava roots using NIRSand machine learning algorithms: Meeting end user demand for low cyanogenic cassava.
    Kanaabi M; Namakula FB; Nuwamanya E; Kayondo IS; Muhumuza N; Wembabazi E; Iragaba P; Nandudu L; Nanyonjo AR; Baguma J; Esuma W; Ozimati A; Settumba M; Alicai T; Ibanda A; Kawuki RS
    Plant Genome; 2024 Jun; 17(2):e20403. PubMed ID: 37938872
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Some Nutritional Characteristics of Enzymatically Resistant Maltodextrin from Cassava (Manihot esculenta Crantz) Starch.
    Toraya-Avilés R; Segura-Campos M; Chel-Guerrero L; Betancur-Ancona D
    Plant Foods Hum Nutr; 2017 Jun; 72(2):149-155. PubMed ID: 28102511
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Abscisic Acid Signaling in the Regulation of Postharvest Physiological Deterioration of Sliced Cassava Tuberous Roots.
    Yan Y; Zhao S; Ye X; Tian L; Shang S; Tie W; Zeng L; Zeng L; Yang J; Li M; Wang Y; Xie Z; Hu W
    J Agric Food Chem; 2022 Oct; 70(40):12830-12840. PubMed ID: 36183268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biosynthesis of scopoletin and scopolin in cassava roots during post-harvest physiological deterioration: the E-Z-isomerisation stage.
    Bayoumi SA; Rowan MG; Blagbrough IS; Beeching JR
    Phytochemistry; 2008 Dec; 69(17):2928-36. PubMed ID: 19004461
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Natural variation in expression of genes associated with carotenoid biosynthesis and accumulation in cassava (Manihot esculenta Crantz) storage root.
    Carvalho LJ; Agustini MA; Anderson JV; Vieira EA; de Souza CR; Chen S; Schaal BA; Silva JP
    BMC Plant Biol; 2016 Jun; 16(1):133. PubMed ID: 27286876
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of heterogeneity of Copia-like retrotransposons in the genome of cassava (Manihot esculenta Crantz).
    Gbadegesin MA; Beeching JR
    Niger J Physiol Sci; 2011 Dec; 26(2):125-32. PubMed ID: 22547180
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Variations in the chemical composition of cassava ( Manihot esculenta Crantz) leaves and roots as affected by genotypic and environmental variation.
    Burns AE; Gleadow RM; Zacarias AM; Cuambe CE; Miller RE; Cavagnaro TR
    J Agric Food Chem; 2012 May; 60(19):4946-56. PubMed ID: 22515684
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An efficient treatment for detoxification process of cassava starch by plant cell wall-degrading enzymes.
    Sornyotha S; Kyu KL; Ratanakhanokchai K
    J Biosci Bioeng; 2010 Jan; 109(1):9-14. PubMed ID: 20129074
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation of biosynthetic pathways to hydroxycoumarins during post-harvest physiological deterioration in Cassava roots by using stable isotope labelling.
    Bayoumi SA; Rowan MG; Beeching JR; Blagbrough IS
    Chembiochem; 2008 Dec; 9(18):3013-22. PubMed ID: 19035613
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.