These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24838551)

  • 1. Memory-guided obstacle crossing: more failures were observed for the trail limb versus lead limb.
    Heijnen MJ; Romine NL; Stumpf DM; Rietdyk S
    Exp Brain Res; 2014 Jul; 232(7):2131-42. PubMed ID: 24838551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Obstacle avoidance during locomotion using haptic information in normally sighted humans.
    Patla AE; Davies TC; Niechwiej E
    Exp Brain Res; 2004 Mar; 155(2):173-85. PubMed ID: 14770274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors leading to obstacle contact during adaptive locomotion.
    Heijnen MJ; Muir BC; Rietdyk S
    Exp Brain Res; 2012 Nov; 223(2):219-31. PubMed ID: 22972450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of adaptive locomotion: effect of visual obstruction and visual cues in the environment.
    Rietdyk S; Rhea CK
    Exp Brain Res; 2006 Feb; 169(2):272-8. PubMed ID: 16421728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of distant and on-line visual information on the control of approach phase and step over an obstacle during locomotion.
    Mohagheghi AA; Moraes R; Patla AE
    Exp Brain Res; 2004 Apr; 155(4):459-68. PubMed ID: 14770275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual exteroceptive information provided during obstacle crossing did not modify the lower limb trajectory.
    Rhea CK; Rietdyk S
    Neurosci Lett; 2007 May; 418(1):60-5. PubMed ID: 17382468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Failures in adaptive locomotion: trial-and-error exploration to determine adequate foot elevation over obstacles.
    Heijnen MJH; Rietdyk S
    Exp Brain Res; 2018 Jan; 236(1):187-194. PubMed ID: 29119208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proactive gait strategies to mitigate risk of obstacle contact are more prevalent with advancing age.
    Muir BC; Haddad JM; Heijnen MJ; Rietdyk S
    Gait Posture; 2015 Jan; 41(1):233-9. PubMed ID: 25455212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Obstacle crossing during locomotion: visual exproprioceptive information is used in an online mode to update foot placement before the obstacle but not swing trajectory over it.
    Timmis MA; Buckley JG
    Gait Posture; 2012 May; 36(1):160-2. PubMed ID: 22424759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manipulating sensory information: obstacle crossing strategies between typically developing children and young adults.
    Rapos V; Cinelli M
    Exp Brain Res; 2020 Feb; 238(2):513-523. PubMed ID: 31960105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relation between frontal plane center of mass position stability and foot elevation during obstacle crossing.
    Yamagata M; Tateuchi H; Pataky T; Shimizu I; Ichihashi N
    J Biomech; 2021 Feb; 116():110219. PubMed ID: 33482594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of vision and its age-related changes to postural stability in obstacle crossing during locomotion.
    Kunimune S; Okada S
    Gait Posture; 2019 May; 70():284-288. PubMed ID: 30925352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Foot clearance when crossing obstacles of different heights with the lead and trail limbs.
    Miura Y; Shinya M
    Gait Posture; 2021 Jul; 88():155-160. PubMed ID: 34052473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The quality of visual information about the lower extremities influences visuomotor coordination during virtual obstacle negotiation.
    Kim A; Kretch KS; Zhou Z; Finley JM
    J Neurophysiol; 2018 Aug; 120(2):839-847. PubMed ID: 29742030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual feedforward control in human locomotion during avoidance of obstacles that change size.
    Santos LC; Moraes R; Patla AE
    Motor Control; 2010 Oct; 14(4):424-39. PubMed ID: 21051786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of object height and visual information on the control of obstacle crossing during locomotion in healthy older adults.
    Kunimune S; Okada S
    Gait Posture; 2017 Jun; 55():126-130. PubMed ID: 28437760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visuomotor Transformation for the Lead Leg Affects Trail Leg Trajectories During Visually Guided Crossing Over a Virtual Obstacle in Humans.
    Hagio S; Kouzaki M
    Front Neurosci; 2020; 14():357. PubMed ID: 32390793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utility of peripheral visual cues in planning and controlling adaptive gait.
    Graci V; Elliott DB; Buckley JG
    Optom Vis Sci; 2010 Jan; 87(1):21-7. PubMed ID: 19918210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gaze diversion affects cognitive and motor performance in young adults when stepping over obstacles.
    Cho H; Romine NL; Barbieri FA; Rietdyk S
    Gait Posture; 2019 Sep; 73():273-278. PubMed ID: 31394370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Online visual cues can compensate for deficits in cutaneous feedback from the dorsal ankle joint for the trailing limb but not the leading limb during obstacle crossing.
    Howe EE; Toth AJ; Bent LR
    Exp Brain Res; 2018 Nov; 236(11):2887-2898. PubMed ID: 30073386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.