These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 24838552)
41. [Interlabyrinthine asymmetry, vestibular dysfunction and space motion sickness]. Gorgiladze GI; Samarin GI; Brianov II Kosm Biol Aviakosm Med; 1986; 20(3):19-31. PubMed ID: 3525979 [TBL] [Abstract][Full Text] [Related]
42. Integration of canal and otolith inputs by central vestibular neurons is subadditive for both active and passive self-motion: implication for perception. Carriot J; Jamali M; Brooks JX; Cullen KE J Neurosci; 2015 Feb; 35(8):3555-65. PubMed ID: 25716854 [TBL] [Abstract][Full Text] [Related]
43. Unusual vestibular and visual input in human dynamic balance as a motion sickness susceptibility test. Séverac Cauquil A; Dupui P; Costes Salon MC; Bessou P; Güell A Aviat Space Environ Med; 1997 Jul; 68(7):588-95. PubMed ID: 9215463 [TBL] [Abstract][Full Text] [Related]
44. Motion sickness and perception: a reappraisal of the sensory conflict approach. Yardley L Br J Psychol; 1992 Nov; 83 ( Pt 4)():449-71. PubMed ID: 1486361 [TBL] [Abstract][Full Text] [Related]
46. Statistics of the vestibular input experienced during natural self-motion: implications for neural processing. Carriot J; Jamali M; Chacron MJ; Cullen KE J Neurosci; 2014 Jun; 34(24):8347-57. PubMed ID: 24920638 [TBL] [Abstract][Full Text] [Related]
47. The real identity and sensory overlap mechanism of special vestibular afferent neurons that sense both rotation and linear force. Ren P; Li B; Dong S; Lyu B; Qu J; Gong S; Zhang Q; Han P Life Sci; 2020 Oct; 259():118144. PubMed ID: 32755624 [TBL] [Abstract][Full Text] [Related]
48. Signal processing in the vestibular system during active versus passive head movements. Cullen KE; Roy JE J Neurophysiol; 2004 May; 91(5):1919-33. PubMed ID: 15069088 [TBL] [Abstract][Full Text] [Related]
49. Cerebellar Prediction of the Dynamic Sensory Consequences of Gravity. Mackrous I; Carriot J; Jamali M; Cullen KE Curr Biol; 2019 Aug; 29(16):2698-2710.e4. PubMed ID: 31378613 [TBL] [Abstract][Full Text] [Related]
50. [Motion sickness in lower vertebrates: studies under conditions of weightlessness and under land conditions]. Lychakov DV Zh Evol Biokhim Fiziol; 2012; 48(6):613-31. PubMed ID: 23401973 [TBL] [Abstract][Full Text] [Related]
51. Nausogenic properties of various dynamic and static force environments. von Baumgarten RJ; Vogel H; Kass JR Acta Astronaut; 1981; 8(9-10):1005-13. PubMed ID: 11543089 [TBL] [Abstract][Full Text] [Related]
52. Afferent signals from cat extraocular muscles in the medial vestibular nucleus, the nucleus praepositus hypoglossi and adjacent brainstem structures. Ashton JA; Boddy A; Dean SR; Milleret C; Donaldson IM Neuroscience; 1988 Jul; 26(1):131-45. PubMed ID: 3419584 [TBL] [Abstract][Full Text] [Related]
53. M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 1. Sensory adaptation to weightlessness and readaptation to one-g: an overview. Young LR; Oman CM; Watt DG; Money KE; Lichtenberg BK; Kenyon RV; Arrott AP Exp Brain Res; 1986; 64(2):291-8. PubMed ID: 3492384 [TBL] [Abstract][Full Text] [Related]
54. The cerebellum may implement the appropriate coupling of sensory inputs and motor responses: evidence from vestibular physiology. Manzoni D Cerebellum; 2005; 4(3):178-88. PubMed ID: 16147950 [TBL] [Abstract][Full Text] [Related]
55. Long-term deficits in motion detection thresholds and spike count variability after unilateral vestibular lesion. Yu XJ; Thomassen JS; Dickman JD; Newlands SD; Angelaki DE J Neurophysiol; 2014 Aug; 112(4):870-89. PubMed ID: 24848470 [TBL] [Abstract][Full Text] [Related]
56. The vestibular system implements a linear-nonlinear transformation in order to encode self-motion. Massot C; Schneider AD; Chacron MJ; Cullen KE PLoS Biol; 2012; 10(7):e1001365. PubMed ID: 22911113 [TBL] [Abstract][Full Text] [Related]
57. Cerebellar Purkinje cells in male macaques combine sensory and motor information to predict the sensory consequences of active self-motion. Zobeiri OA; Cullen KE Nat Commun; 2024 May; 15(1):4003. PubMed ID: 38734715 [TBL] [Abstract][Full Text] [Related]
59. Vestibular reactions to spaceflight: human factors issues. Young LR Aviat Space Environ Med; 2000 Sep; 71(9 Suppl):A100-4. PubMed ID: 10993318 [TBL] [Abstract][Full Text] [Related]
60. Modelling motion sickness and subjective vertical mismatch detailed for vertical motions. Bos JE; Bles W Brain Res Bull; 1998 Nov; 47(5):537-42. PubMed ID: 10052585 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]