These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 24838555)

  • 1. The effect of light touch on the amplitude of cutaneous reflexes in the arms during treadmill walking.
    Forero J; Misiaszek JE
    Exp Brain Res; 2014 Sep; 232(9):2967-76. PubMed ID: 24838555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The amplitude of interlimb cutaneous reflexes in the leg is influenced by fingertip touch and vision during treadmill locomotion.
    Forero J; Misiaszek JE
    Exp Brain Res; 2015 Jun; 233(6):1773-82. PubMed ID: 25788011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The contribution of light touch sensory cues to corrective reactions during treadmill locomotion.
    Forero J; Misiaszek JE
    Exp Brain Res; 2013 May; 226(4):575-84. PubMed ID: 23483209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Context-dependent modulation of interlimb cutaneous reflexes in arm muscles as a function of stability threat during walking.
    Haridas C; Zehr EP; Misiaszek JE
    J Neurophysiol; 2006 Dec; 96(6):3096-103. PubMed ID: 17005610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postural uncertainty leads to dynamic control of cutaneous reflexes from the foot during human walking.
    Haridas C; Zehr EP; Misiaszek JE
    Brain Res; 2005 Nov; 1062(1-2):48-62. PubMed ID: 16248988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of cutaneous reflexes in arm muscles during walking: further evidence of similar control mechanisms for rhythmic human arm and leg movements.
    Zehr EP; Haridas C
    Exp Brain Res; 2003 Mar; 149(2):260-6. PubMed ID: 12610695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural control of rhythmic, cyclical human arm movement: task dependency, nerve specificity and phase modulation of cutaneous reflexes.
    Zehr EP; Kido A
    J Physiol; 2001 Dec; 537(Pt 3):1033-45. PubMed ID: 11744775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of a light touch reference on cutaneous reflexes from the hand during standing.
    Misiaszek JE; Hackett H; McMahon AJ; Krutz J
    Exp Brain Res; 2021 Mar; 239(3):787-796. PubMed ID: 33398453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of ankle muscles following rapid displacement of a light touch contact during treadmill walking.
    Shiva T; Misiaszek JE
    Exp Brain Res; 2018 Feb; 236(2):563-576. PubMed ID: 29243137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abeta fibers mediate cutaneous reflexes during human walking.
    van Wezel BM; van Engelen BG; Gabreëls FJ; Gabreëls-Festen AA; Duysens J
    J Neurophysiol; 2000 May; 83(5):2980-6. PubMed ID: 10805693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic control of location-specific information in tactile cutaneous reflexes from the foot during human walking.
    Van Wezel BM; Ottenhoff FA; Duysens J
    J Neurosci; 1997 May; 17(10):3804-14. PubMed ID: 9133399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Earth-referenced handrail contact facilitates interlimb cutaneous reflexes during locomotion.
    Lamont EV; Zehr EP
    J Neurophysiol; 2007 Jul; 98(1):433-42. PubMed ID: 17522173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changing coupling between the arms and legs with slow walking speeds alters regulation of somatosensory feedback.
    Klarner T; Pearcey GEP; Sun Y; Barss TS; Zehr EP
    Exp Brain Res; 2020 May; 238(5):1335-1349. PubMed ID: 32333034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensory enhancement amplifies interlimb cutaneous reflexes in wrist extensor muscles.
    Sun Y; Zehr EP
    J Neurophysiol; 2019 Nov; 122(5):2085-2094. PubMed ID: 31509473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Persistence of locomotor-related interlimb reflex networks during walking after stroke.
    Zehr EP; Loadman PM
    Clin Neurophysiol; 2012 Apr; 123(4):796-807. PubMed ID: 21945456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cutaneous reflex modulation during obstacle avoidance under conditions of normal and degraded visual input.
    Marigold DS; Chang AJ; Lajoie K
    Exp Brain Res; 2017 Aug; 235(8):2483-2493. PubMed ID: 28512726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regionally distinct cutaneous afferent populations contribute to reflex modulation evoked by stimulation of the tibial nerve during walking.
    Nakajima T; Suzuki S; Futatsubashi G; Ohtsuska H; Mezzarane RA; Barss TS; Klarner T; Zehr EP; Komiyama T
    J Neurophysiol; 2016 Jul; 116(1):183-90. PubMed ID: 27075541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence suggesting that a transcortical reflex pathway contributes to cutaneous reflexes in the tibialis anterior muscle during walking in man.
    Christensen LO; Morita H; Petersen N; Nielsen J
    Exp Brain Res; 1999 Jan; 124(1):59-68. PubMed ID: 9928790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absence of nerve specificity in human cutaneous reflexes during standing.
    Komiyama T; Zehr EP; Stein RB
    Exp Brain Res; 2000 Jul; 133(2):267-72. PubMed ID: 10968228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soleus Hoffmann reflex amplitudes are specifically modulated by cutaneous inputs from the arms and opposite leg during walking but not standing.
    Suzuki S; Nakajima T; Futatsubashi G; Mezzarane RA; Ohtsuka H; Ohki Y; Zehr EP; Komiyama T
    Exp Brain Res; 2016 Aug; 234(8):2293-304. PubMed ID: 27030502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.