BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 24838561)

  • 1. MODEST: a web-based design tool for oligonucleotide-mediated genome engineering and recombineering.
    Bonde MT; Klausen MS; Anderson MV; Wallin AI; Wang HH; Sommer MO
    Nucleic Acids Res; 2014 Jul; 42(Web Server issue):W408-15. PubMed ID: 24838561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Merlin: Computer-Aided Oligonucleotide Design for Large Scale Genome Engineering with MAGE.
    Quintin M; Ma NJ; Ahmed S; Bhatia S; Lewis A; Isaacs FJ; Densmore D
    ACS Synth Biol; 2016 Jun; 5(6):452-8. PubMed ID: 27054880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRMAGE: CRISPR Optimized MAGE Recombineering.
    Ronda C; Pedersen LE; Sommer MO; Nielsen AT
    Sci Rep; 2016 Jan; 6():19452. PubMed ID: 26797514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recombineering: highly efficient in vivo genetic engineering using single-strand oligos.
    Sawitzke JA; Thomason LC; Bubunenko M; Li X; Costantino N; Court DL
    Methods Enzymol; 2013; 533():157-77. PubMed ID: 24182922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo recombineering of bacteriophage lambda by PCR fragments and single-strand oligonucleotides.
    Oppenheim AB; Rattray AJ; Bubunenko M; Thomason LC; Court DL
    Virology; 2004 Feb; 319(2):185-9. PubMed ID: 14980479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yeast oligo-mediated genome engineering (YOGE).
    DiCarlo JE; Conley AJ; Penttilä M; Jäntti J; Wang HH; Church GM
    ACS Synth Biol; 2013 Dec; 2(12):741-9. PubMed ID: 24160921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct mutagenesis of thousands of genomic targets using microarray-derived oligonucleotides.
    Bonde MT; Kosuri S; Genee HJ; Sarup-Lytzen K; Church GM; Sommer MO; Wang HH
    ACS Synth Biol; 2015 Jan; 4(1):17-22. PubMed ID: 24856730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recombineering to homogeneity: extension of multiplex recombineering to large-scale genome editing.
    Boyle NR; Reynolds TS; Evans R; Lynch M; Gill RT
    Biotechnol J; 2013 May; 8(5):515-22. PubMed ID: 23436787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient overexpression of DNA adenine methylase enables efficient and mobile genome engineering with reduced off-target effects.
    Lennen RM; Nilsson Wallin AI; Pedersen M; Bonde M; Luo H; Herrgård MJ; Sommer MO
    Nucleic Acids Res; 2016 Feb; 44(4):e36. PubMed ID: 26496947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid editing and evolution of bacterial genomes using libraries of synthetic DNA.
    Gallagher RR; Li Z; Lewis AO; Isaacs FJ
    Nat Protoc; 2014 Oct; 9(10):2301-16. PubMed ID: 25188632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient and Scalable Precision Genome Editing in
    Penewit K; Holmes EA; McLean K; Ren M; Waalkes A; Salipante SJ
    mBio; 2018 Feb; 9(1):. PubMed ID: 29463653
    [No Abstract]   [Full Text] [Related]  

  • 12. ORBIT for E. coli: kilobase-scale oligonucleotide recombineering at high throughput and high efficiency.
    Saunders SH; Ahmed AM
    Nucleic Acids Res; 2024 May; 52(8):e43. PubMed ID: 38587185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oligo-Mediated Recombineering and its Use for Making SNPs, Knockouts, Insertions, and Fusions in Mycobacterium tuberculosis.
    Murphy KC
    Methods Mol Biol; 2021; 2314():301-321. PubMed ID: 34235660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modifying bacteriophage lambda with recombineering.
    Thomason LC; Oppenheim AB; Court DL
    Methods Mol Biol; 2009; 501():239-51. PubMed ID: 19066825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precise Editing at DNA Replication Forks Enables Multiplex Genome Engineering in Eukaryotes.
    Barbieri EM; Muir P; Akhuetie-Oni BO; Yellman CM; Isaacs FJ
    Cell; 2017 Nov; 171(6):1453-1467.e13. PubMed ID: 29153834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homologous recombination-mediated cloning and manipulation of genomic DNA regions using Gateway and recombineering systems.
    Rozwadowski K; Yang W; Kagale S
    BMC Biotechnol; 2008 Nov; 8():88. PubMed ID: 19014699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulating replisome dynamics to enhance lambda Red-mediated multiplex genome engineering.
    Lajoie MJ; Gregg CJ; Mosberg JA; Washington GC; Church GM
    Nucleic Acids Res; 2012 Dec; 40(22):e170. PubMed ID: 22904085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A functional recT gene for recombineering of Clostridium.
    Dong H; Tao W; Gong F; Li Y; Zhang Y
    J Biotechnol; 2014 Mar; 173():65-7. PubMed ID: 24384234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-scale promoter engineering by coselection MAGE.
    Wang HH; Kim H; Cong L; Jeong J; Bang D; Church GM
    Nat Methods; 2012 Jun; 9(6):591-3. PubMed ID: 22484848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome engineering using targeted oligonucleotide libraries and functional selection.
    Diner EJ; Garza-Sánchez F; Hayes CS
    Methods Mol Biol; 2011; 765():71-82. PubMed ID: 21815087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.