BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 24838837)

  • 1. Modulating aβ33-42 peptide assembly by graphene oxide.
    Li Q; Liu L; Zhang S; Xu M; Wang X; Wang C; Besenbacher F; Dong M
    Chemistry; 2014 Jun; 20(24):7236-40. PubMed ID: 24838837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size Effect of Graphene Oxide on Modulating Amyloid Peptide Assembly.
    Wang J; Cao Y; Li Q; Liu L; Dong M
    Chemistry; 2015 Jun; 21(27):9632-7. PubMed ID: 26031933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic insights into the inhibition and size effects of graphene oxide nanosheets on the aggregation of an amyloid-β peptide fragment.
    Chen Y; Chen Z; Sun Y; Lei J; Wei G
    Nanoscale; 2018 May; 10(19):8989-8997. PubMed ID: 29725676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene oxide strongly inhibits amyloid beta fibrillation.
    Mahmoudi M; Akhavan O; Ghavami M; Rezaee F; Ghiasi SM
    Nanoscale; 2012 Dec; 4(23):7322-5. PubMed ID: 23079862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic solvent mediated self-association of an amyloid forming peptide from beta2-microglobulin: an atomic force microscopy study.
    Chaudhary N; Singh S; Nagaraj R
    Biopolymers; 2008; 90(6):783-91. PubMed ID: 18798577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential Modulating Effect of MoS
    Wang J; Liu L; Ge D; Zhang H; Feng Y; Zhang Y; Chen M; Dong M
    Chemistry; 2018 Mar; 24(14):3397-3402. PubMed ID: 29210123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies of the growth, evolution, and self-aggregation of β-amyloid fibrils using tapping-mode atomic force microscopy.
    Serem WK; Bett CK; Ngunjiri JN; Garno JC
    Microsc Res Tech; 2011 Jul; 74(7):699-708. PubMed ID: 21698718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beta-amyloid fibril formation is promoted by step edges of highly oriented pyrolytic graphite.
    Losic D; Martin LL; Aguilar MI; Small DH
    Biopolymers; 2006; 84(5):519-26. PubMed ID: 16752395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural regulation of a peptide-conjugated graft copolymer: a simple model for amyloid formation.
    Koga T; Taguchi K; Kobuke Y; Kinoshita T; Higuchi M
    Chemistry; 2003 Mar; 9(5):1146-56. PubMed ID: 12596151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Photoresponsive Graphene Oxide-Modified g-C
    Wang J; Zhang Z; Zhang H; Li C; Chen M; Liu L; Dong M
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):96-103. PubMed ID: 30532948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A possible role for pi-stacking in the self-assembly of amyloid fibrils.
    Gazit E
    FASEB J; 2002 Jan; 16(1):77-83. PubMed ID: 11772939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of amyloid fibril self-assembly and inhibition. Model short peptides as a key research tool.
    Gazit E
    FEBS J; 2005 Dec; 272(23):5971-8. PubMed ID: 16302962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On enhancers and inhibitors of elastin-derived amyloidogenesis.
    Bochicchio B; Lorusso M; Pepe A; Tamburro AM
    Nanomedicine (Lond); 2009 Jan; 4(1):31-46. PubMed ID: 19093894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the beta-sheet-breaker peptide LPFFD on oriented network of amyloid β25-35 fibrils.
    Murvai U; Soós K; Penke B; Kellermayer MS
    J Mol Recognit; 2011; 24(3):453-60. PubMed ID: 21504023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphology and persistence length of amyloid fibrils are correlated to peptide molecular structure.
    vandenAkker CC; Engel MF; Velikov KP; Bonn M; Koenderink GH
    J Am Chem Soc; 2011 Nov; 133(45):18030-3. PubMed ID: 21999711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure, orientation, and surface interaction of Alzheimer amyloid-β peptides on the graphite.
    Yu X; Wang Q; Lin Y; Zhao J; Zhao C; Zheng J
    Langmuir; 2012 Apr; 28(16):6595-605. PubMed ID: 22468636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epitaxial assembly dynamics of mutant amyloid β25-35_N27C fibrils explored with time-resolved scanning force microscopy.
    Kellermayer MS; Murvai Ü; Horváth A; Lászlóffi E; Soós K; Penke B
    Biophys Chem; 2013 Dec; 184():54-61. PubMed ID: 24061043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stereospecific amyloid-like fibril formation by a peptide fragment of beta2-microglobulin.
    Wadai H; Yamaguchi K; Takahashi S; Kanno T; Kawai T; Naiki H; Goto Y
    Biochemistry; 2005 Jan; 44(1):157-64. PubMed ID: 15628856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Watching amyloid fibrils grow by time-lapse atomic force microscopy.
    Goldsbury C; Kistler J; Aebi U; Arvinte T; Cooper GJ
    J Mol Biol; 1999 Jan; 285(1):33-9. PubMed ID: 9878384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiscale surface self-assembly of an amyloid-like peptide.
    Lepère M; Chevallard C; Hernandez JF; Mitraki A; Guenoun P
    Langmuir; 2007 Jul; 23(15):8150-5. PubMed ID: 17579468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.