These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 24838913)
1. Generation, Expansion, and Differentiation of Human Induced Pluripotent Stem Cells (hiPSCs) Derived From the Umbilical Cords of Newborns. Song RS; Carroll JM; Acevedo L; Wu D; Liu Y; Snyder EY Curr Protoc Stem Cell Biol; 2014 May; 29():1C.16.1-13. PubMed ID: 24838913 [TBL] [Abstract][Full Text] [Related]
2. Sendai Virus-Based Reprogramming of Mesenchymal Stromal/Stem Cells from Umbilical Cord Wharton's Jelly into Induced Pluripotent Stem Cells. Miere C; Devito L; Ilic D Methods Mol Biol; 2016; 1357():33-44. PubMed ID: 26246353 [TBL] [Abstract][Full Text] [Related]
3. Tissues Derived From Reprogrammed Wharton's Jelly Stem Cells of the Umbilical Cord Provide an Ideal Platform to Study the Effects of Glucose, Zika Virus, and Other Agents on the Fetus. Fong CY; Biswas A; Stunkel W; Chong YS; Bongso A J Cell Biochem; 2017 Mar; 118(3):437-441. PubMed ID: 27617437 [TBL] [Abstract][Full Text] [Related]
4. Comparison of human isogeneic Wharton's jelly MSCs and iPSC-derived MSCs reveals differentiation-dependent metabolic responses to IFNG stimulation. Devito L; Klontzas ME; Cvoro A; Galleu A; Simon M; Hobbs C; Dazzi F; Mantalaris A; Khalaf Y; Ilic D Cell Death Dis; 2019 Mar; 10(4):277. PubMed ID: 30894508 [TBL] [Abstract][Full Text] [Related]
5. Human umbilical cord Wharton's Jelly-derived mesenchymal stem cells differentiation into nerve-like cells. Ma L; Feng XY; Cui BL; Law F; Jiang XW; Yang LY; Xie QD; Huang TH Chin Med J (Engl); 2005 Dec; 118(23):1987-93. PubMed ID: 16336835 [TBL] [Abstract][Full Text] [Related]
6. Laser-assisted generation of human induced pluripotent stem cells. Liu Y; Wu D; Lao D; Peterson C; Hohenstein Elliott KA; Snyder EY Curr Protoc Stem Cell Biol; 2014 Nov; 31():4A.7.1-15. PubMed ID: 25366899 [TBL] [Abstract][Full Text] [Related]
7. Umbilical Cord Tissue as a Source of Young Cells for the Derivation of Induced Pluripotent Stem Cells Using Non-Integrating Episomal Vectors and Feeder-Free Conditions. Mohamed A; Chow T; Whiteley J; Fantin A; Sorra K; Hicks R; Rogers IM Cells; 2020 Dec; 10(1):. PubMed ID: 33396312 [TBL] [Abstract][Full Text] [Related]
8. Reprogramming of Adult Peripheral Blood Cells into Human Induced Pluripotent Stem Cells as a Safe and Accessible Source of Endothelial Cells. Simara P; Tesarova L; Rehakova D; Farkas S; Salingova B; Kutalkova K; Vavreckova E; Matula P; Matula P; Veverkova L; Koutna I Stem Cells Dev; 2018 Jan; 27(1):10-22. PubMed ID: 29117787 [TBL] [Abstract][Full Text] [Related]
10. Preferential Hematopoietic Differentiation in Induced Pluripotent Stem Cells Derived From Human Umbilical Cord Arterial Endothelial Cells. Pei H; Li H; Xu L; Zhang B; Zhang H; Jia Y; Liang L; Xie X; Fan Z; Yang Z; Wang X; Song F; He L; Yue W; Pei X Arterioscler Thromb Vasc Biol; 2023 May; 43(5):697-712. PubMed ID: 36951064 [TBL] [Abstract][Full Text] [Related]
11. A simple and serum-free protocol for cryopreservation of human umbilical cord as source of Wharton's jelly mesenchymal stem cells. Roy S; Arora S; Kumari P; Ta M Cryobiology; 2014 Jun; 68(3):467-72. PubMed ID: 24704519 [TBL] [Abstract][Full Text] [Related]
12. Long-term expansion and pluripotent marker array analysis of Wharton's jelly-derived mesenchymal stem cells. Nekanti U; Rao VB; Bahirvani AG; Jan M; Totey S; Ta M Stem Cells Dev; 2010 Jan; 19(1):117-30. PubMed ID: 19619003 [TBL] [Abstract][Full Text] [Related]
13. Efficient generation of functional cardiomyocytes from human umbilical cord-derived virus-free induced pluripotent stem cells. Wu KH; Wang SY; Xiao QR; Yang Y; Huang NP; Mo XM; Sun J Cell Tissue Res; 2018 Nov; 374(2):275-283. PubMed ID: 29961217 [TBL] [Abstract][Full Text] [Related]
15. Immune characterization of mesenchymal stem cells in human umbilical cord Wharton's jelly and derived cartilage cells. Liu S; Yuan M; Hou K; Zhang L; Zheng X; Zhao B; Sui X; Xu W; Lu S; Guo Q Cell Immunol; 2012; 278(1-2):35-44. PubMed ID: 23121974 [TBL] [Abstract][Full Text] [Related]
16. Comparison of human mesenchymal stem cells isolated by explant culture method from entire umbilical cord and Wharton's jelly matrix. Hendijani F; Sadeghi-Aliabadi H; Haghjooy Javanmard S Cell Tissue Bank; 2014 Dec; 15(4):555-65. PubMed ID: 24532125 [TBL] [Abstract][Full Text] [Related]
17. A rapid, simple, and reproducible method for the isolation of mesenchymal stromal cells from Wharton's jelly without enzymatic treatment. De Bruyn C; Najar M; Raicevic G; Meuleman N; Pieters K; Stamatopoulos B; Delforge A; Bron D; Lagneaux L Stem Cells Dev; 2011 Mar; 20(3):547-57. PubMed ID: 20923277 [TBL] [Abstract][Full Text] [Related]
18. Type VII collagen gene expression in human umbilical tissue and cells. Ryynänen J; Tan EM; Hoffren J; Woodley DT; Sollberg S Lab Invest; 1993 Sep; 69(3):300-4. PubMed ID: 7690866 [TBL] [Abstract][Full Text] [Related]
19. Pluripotent gene expression in mesenchymal stem cells from human umbilical cord Wharton's jelly and their differentiation potential to neural-like cells. Tantrawatpan C; Manochantr S; Kheolamai P; U-Pratya Y; Supokawej A; Issaragrisil S J Med Assoc Thai; 2013 Sep; 96(9):1208-17. PubMed ID: 24163998 [TBL] [Abstract][Full Text] [Related]
20. Molecular pathways reflecting poor intrauterine growth are found in Wharton's jelly-derived mesenchymal stem cells. Sukarieh R; Joseph R; Leow SC; Li Y; Löffler M; Aris IM; Tan JH; Teh AL; Chen L; Holbrook JD; Ng KL; Lee YS; Chong YS; Summers SA; Gluckman PD; Stünkel W Hum Reprod; 2014 Oct; 29(10):2287-301. PubMed ID: 25129543 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]