These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 24838939)

  • 1. (Ir)reversibility in dense granular systems driven by oscillating forces.
    Möbius R; Heussinger C
    Soft Matter; 2014 Jul; 10(27):4806-12. PubMed ID: 24838939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of surface friction on a two-dimensional granular system: cooling bound system.
    Dutt M; Behringer RP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061304. PubMed ID: 15697352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drag force on a spherical intruder in a granular bed at low Froude number.
    Hilton JE; Tordesillas A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062203. PubMed ID: 24483432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluidization of a vertically vibrated two-dimensional hard sphere packing: a granular meltdown.
    Götzendorfer A; Tai CH; Kruelle CA; Rehberg I; Hsiau SS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011304. PubMed ID: 16907086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melting a granular glass by cooling.
    Plagge J; Heussinger C
    Phys Rev Lett; 2013 Feb; 110(7):078001. PubMed ID: 25166409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheology near jamming: the influence of lubrication forces.
    Maiti M; Heussinger C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052308. PubMed ID: 25353801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Driven inelastic-particle systems with drag.
    Wylie JJ; Zhang Q; Li Y; Hengyi X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031301. PubMed ID: 19391929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A CFD study of the deep bed filtration mechanism for submicron/nano-particle suspension.
    Tung KL; Chang YL; Lai JY; Chang CH; Chuang CJ
    Water Sci Technol; 2004; 50(12):255-64. PubMed ID: 15686029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Order-disorder transition in swirled granular disks.
    Krinninger P; Fischer A; Fortini A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012201. PubMed ID: 25122293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geometric frustration induces the transition between rotation and counterrotation in swirled granular media.
    Lee LM; Ryan JP; Lahini Y; Holmes-Cerfon M; Rubinstein SM
    Phys Rev E; 2019 Jul; 100(1-1):012903. PubMed ID: 31499876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoelastic study of dense granular free-surface flows.
    Thomas AL; Vriend NM
    Phys Rev E; 2019 Jul; 100(1-1):012902. PubMed ID: 31499875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emergent states in dense systems of active rods: from swarming to turbulence.
    Wensink HH; Löwen H
    J Phys Condens Matter; 2012 Nov; 24(46):464130. PubMed ID: 23114651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of a heated granular gas in a washboard potential.
    Costantini G; Cecconi F; Marini-Bettolo-Marconi U
    J Chem Phys; 2006 Nov; 125(20):204711. PubMed ID: 17144727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homogeneous states in driven granular mixtures: Enskog kinetic theory versus molecular dynamics simulations.
    Khalil N; Garzó V
    J Chem Phys; 2014 Apr; 140(16):164901. PubMed ID: 24784304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active microrheology of driven granular particles.
    Wang T; Grob M; Zippelius A; Sperl M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042209. PubMed ID: 24827243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Velocity distribution and the effect of wall roughness in granular Poiseuille flow.
    Vijayakumar KC; Alam M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051306. PubMed ID: 17677053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling the motion of interacting particles: homogeneous systems and binary mixtures.
    Savel'ev S; Nori F
    Chaos; 2005 Jun; 15(2):26112. PubMed ID: 16035914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glassy systems under time-dependent driving forces: application to slow granular rheology.
    Berthier L; Cugliandolo LF; Iguain JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 1):051302. PubMed ID: 11414897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics and structures of segregation in a dense, vibrating granular bed.
    Sun J; Battaglia F; Subramaniam S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061307. PubMed ID: 17280062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature scaling in a dense vibrofluidized granular material.
    Sunthar P; Kumaran V
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):1951-5. PubMed ID: 11969987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.