These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 24838966)
1. Using templated agarose scaffolds to promote axon regeneration through sites of spinal cord injury. Koffler J; Samara RF; Rosenzweig ES Methods Mol Biol; 2014; 1162():157-65. PubMed ID: 24838966 [TBL] [Abstract][Full Text] [Related]
2. Regeneration of long-tract axons through sites of spinal cord injury using templated agarose scaffolds. Gros T; Sakamoto JS; Blesch A; Havton LA; Tuszynski MH Biomaterials; 2010 Sep; 31(26):6719-29. PubMed ID: 20619785 [TBL] [Abstract][Full Text] [Related]
3. Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Stokols S; Tuszynski MH Biomaterials; 2006 Jan; 27(3):443-51. PubMed ID: 16099032 [TBL] [Abstract][Full Text] [Related]
4. Templated agarose scaffolds for the support of motor axon regeneration into sites of complete spinal cord transection. Gao M; Lu P; Bednark B; Lynam D; Conner JM; Sakamoto J; Tuszynski MH Biomaterials; 2013 Feb; 34(5):1529-36. PubMed ID: 23182350 [TBL] [Abstract][Full Text] [Related]
6. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection. Tsai EC; Dalton PD; Shoichet MS; Tator CH Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035 [TBL] [Abstract][Full Text] [Related]
7. Cell-seeded alginate hydrogel scaffolds promote directed linear axonal regeneration in the injured rat spinal cord. Günther MI; Weidner N; Müller R; Blesch A Acta Biomater; 2015 Nov; 27():140-150. PubMed ID: 26348141 [TBL] [Abstract][Full Text] [Related]
8. Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats. Liu J; Chen J; Liu B; Yang C; Xie D; Zheng X; Xu S; Chen T; Wang L; Zhang Z; Bai X; Jin D J Neurol Sci; 2013 Feb; 325(1-2):127-36. PubMed ID: 23317924 [TBL] [Abstract][Full Text] [Related]
9. In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury. Jain A; Kim YT; McKeon RJ; Bellamkonda RV Biomaterials; 2006 Jan; 27(3):497-504. PubMed ID: 16099038 [TBL] [Abstract][Full Text] [Related]
10. Implantation of a Matrigel-loaded agarose scaffold promotes functional regeneration of axons after spinal cord injury in rat. Han S; Lee JY; Heo EY; Kwon IK; Yune TY; Youn I Biochem Biophys Res Commun; 2018 Feb; 496(3):785-791. PubMed ID: 29395078 [TBL] [Abstract][Full Text] [Related]
11. Functional improvement following implantation of a microstructured, type-I collagen scaffold into experimental injuries of the adult rat spinal cord. Altinova H; Möllers S; Führmann T; Deumens R; Bozkurt A; Heschel I; Damink LH; Schügner F; Weis J; Brook GA Brain Res; 2014 Oct; 1585():37-50. PubMed ID: 25193604 [TBL] [Abstract][Full Text] [Related]
19. Olfactory and respiratory lamina propria transplantation after spinal cord transection in rats: effects on functional recovery and axonal regeneration. Centenaro LA; Jaeger Mda C; Ilha J; de Souza MA; Kalil-Gaspar PI; Cunha NB; Marcuzzo S; Achaval M Brain Res; 2011 Dec; 1426():54-72. PubMed ID: 22041228 [TBL] [Abstract][Full Text] [Related]
20. Effect of decellularized spinal scaffolds on spinal axon regeneration in rats. Zhu J; Lu Y; Yu F; Zhou L; Shi J; Chen Q; Ding W; Wen X; Ding YQ; Mei J; Wang J J Biomed Mater Res A; 2018 Mar; 106(3):698-705. PubMed ID: 28986946 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]