These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 24839193)

  • 101. Protein fluorescence measurements within electrospray droplets.
    Rodriguez-Cruz SE; Khoury JT; Parks JH
    J Am Soc Mass Spectrom; 2001 Jun; 12(6):716-25. PubMed ID: 11401162
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Gas-phase hydrogen/deuterium exchange in a traveling wave ion guide for the examination of protein conformations.
    Rand KD; Pringle SD; Murphy JP; Fadgen KE; Brown J; Engen JR
    Anal Chem; 2009 Dec; 81(24):10019-28. PubMed ID: 19921790
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Diffusion measurements by electrospray mass spectrometry for studying solution-phase noncovalent interactions.
    Clark SM; Konermann L
    J Am Soc Mass Spectrom; 2003 May; 14(5):430-41. PubMed ID: 12745212
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Nonresonant femtosecond laser vaporization of aqueous protein preserves folded structure.
    Brady JJ; Judge EJ; Levis RJ
    Proc Natl Acad Sci U S A; 2011 Jul; 108(30):12217-22. PubMed ID: 21746908
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Effects of drift gas on collision cross sections of a protein standard in linear drift tube and traveling wave ion mobility mass spectrometry.
    Jurneczko E; Kalapothakis J; Campuzano ID; Morris M; Barran PE
    Anal Chem; 2012 Oct; 84(20):8524-31. PubMed ID: 22974196
    [TBL] [Abstract][Full Text] [Related]  

  • 106. HPTLC/DESI-MS imaging of tryptic protein digests separated in two dimensions.
    Pasilis SP; Kertesz V; Van Berkel GJ; Schulz M; Schorcht S
    J Mass Spectrom; 2008 Dec; 43(12):1627-35. PubMed ID: 18563861
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Characterization of conformational changes and noncovalent complexes of myoglobin by electrospray ionization mass spectrometry, circular dichroism and fluorescence spectroscopy.
    Lin X; Zhao W; Wang X
    J Mass Spectrom; 2010 Jun; 45(6):618-26. PubMed ID: 20527030
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Evidence of molecular fragmentation inside the charged droplets produced by electrospray process.
    Banerjee S; Prakash H; Mazumdar S
    J Am Soc Mass Spectrom; 2011 Oct; 22(10):1707-17. PubMed ID: 21952884
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Characterization of transient protein folding intermediates during myoglobin reconstitution by time-resolved electrospray mass spectrometry with on-line isotopic pulse labeling.
    Simmons DA; Konermann L
    Biochemistry; 2002 Feb; 41(6):1906-14. PubMed ID: 11827537
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Desalting protein ions in native mass spectrometry using supercharging reagents.
    Cassou CA; Williams ER
    Analyst; 2014 Oct; 139(19):4810-9. PubMed ID: 25133273
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Hofmeister effects on protein stability are dependent on the nature of the unfolded state.
    Ribeiro SS; Castro TG; Gomes CM; Marcos JC
    Phys Chem Chem Phys; 2021 Nov; 23(44):25210-25225. PubMed ID: 34730580
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Initial Protein Unfolding Events in Ubiquitin, Cytochrome c and Myoglobin Are Revealed with the Use of 213 nm UVPD Coupled to IM-MS.
    Theisen A; Black R; Corinti D; Brown JM; Bellina B; Barran PE
    J Am Soc Mass Spectrom; 2019 Jan; 30(1):24-33. PubMed ID: 29949061
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Application of ion-impact energy measurement to electrospray ionization mass spectrometry of proteins and protein mixtures.
    Rabin MW; Hilton GC; Martinis JM
    J Am Soc Mass Spectrom; 2001 Jul; 12(7):826-31. PubMed ID: 11444605
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Investigating Electrosprayed Droplets Using Particle-into-Liquid Sampling for Nanoliter Electrochemical Reactions.
    Park NA; Glish GL; Dick JE
    J Am Soc Mass Spectrom; 2023 Feb; 34(2):320-327. PubMed ID: 36629397
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Negative Electrospray Supercharging Mechanisms of Nucleic Acid Structures.
    Ghosh D; Rosu F; Gabelica V
    Anal Chem; 2022 Nov; 94(44):15386-15394. PubMed ID: 36288105
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Suppression of Protein Structural Perturbations in Native Electrospray Ionization during the Final Evaporation Stages Revealed by Molecular Dynamics Simulations.
    Luan M; Hou Z; Huang G
    J Phys Chem B; 2022 Jan; 126(1):144-150. PubMed ID: 34964355
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Atomistic Modeling of Jet Formation in Charged Droplets.
    Consta S
    J Phys Chem B; 2022 Oct; 126(41):8350-8357. PubMed ID: 36201739
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Release of nanodiscs from charged nano-droplets in the electrospray ionization revealed by molecular dynamics simulations.
    Wang B; Tieleman DP
    Commun Chem; 2023 Jan; 6(1):21. PubMed ID: 36717705
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Salt Enrichment and Dynamics in the Interface of Supercooled Aqueous Droplets.
    Kwan V; Maiti SR; Saika-Voivod I; Consta S
    J Am Chem Soc; 2022 Jun; 144(25):11148-11158. PubMed ID: 35715222
    [TBL] [Abstract][Full Text] [Related]  

  • 120. A mechanistic study of electrospray mass spectrometry: charge gradients within electrospray droplets and their influence on ion response.
    Zhou S; Cook KD
    J Am Soc Mass Spectrom; 2001 Feb; 12(2):206-14. PubMed ID: 11212005
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.