These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 24839311)

  • 21. [Reconstruction of Water Hyperspectral Remote Sensing Reflectance Based on Sparse Representation and Its Application].
    Li Y; Li YM; Guo YL; Zhang YL; Zhang YB; Hu YD; Xia Z
    Huan Jing Ke Xue; 2019 Jan; 40(1):200-210. PubMed ID: 30628276
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Atmospheric correction algorithm over coastal and inland waters based on the red and NIR bands: application to Landsat-8/OLI and VNREDSat-1/NAOMI observations.
    Ngoc DD; Loisel H; Duforêt-Gaurier L; Jamet C; Vantrepotte V; Goyens C; Xuan HC; Minh NN; Van TN
    Opt Express; 2019 Oct; 27(22):31676-31697. PubMed ID: 31684396
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Hyperspectral remote sensing of chlorophyll a concentrations in the Lake Taihu, based on water optical classification].
    Sun DY; Zhou XY; Li YM; Chen XL; Huang CC; Gong SQ
    Huan Jing Ke Xue; 2013 Aug; 34(8):3002-9. PubMed ID: 24191541
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectral relationships for atmospheric correction. II. Improving NASA's standard and MUMM near infra-red modeling schemes.
    Goyens C; Jamet C; Ruddick KG
    Opt Express; 2013 Sep; 21(18):21176-87. PubMed ID: 24103991
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Remote estimation of phycocyanin concentration in inland waters based on optical classification.
    Lyu L; Song K; Wen Z; Liu G; Fang C; Shang Y; Li S; Tao H; Wang X; Li Y; Wang X
    Sci Total Environ; 2023 Nov; 899():166363. PubMed ID: 37598955
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Noise tolerance of algorithms for estimating chlorophyll a concentration in turbid waters.
    Chen J
    Environ Monit Assess; 2014 Apr; 186(4):2297-311. PubMed ID: 24343707
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Satellites for long-term monitoring of inland U.S. lakes: The MERIS time series and application for chlorophyll-a.
    Seegers BN; Werdell PJ; Vandermeulen RA; Salls W; Stumpf RP; Schaeffer BA; Owens TJ; Bailey SW; Scott JP; Loftin KA
    Remote Sens Environ; 2021 Dec; 266():1-14. PubMed ID: 36424983
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A semi-analytical algorithm for deriving the particle size distribution slope of turbid inland water based on OLCI data: A case study in Lake Hongze.
    Lei S; Xu J; Li Y; Li L; Lyu H; Liu G; Chen Y; Lu C; Tian C; Jiao W
    Environ Pollut; 2021 Feb; 270():116288. PubMed ID: 33352484
    [TBL] [Abstract][Full Text] [Related]  

  • 29. True colour classification of natural waters with medium-spectral resolution satellites: SeaWiFS, MODIS, MERIS and OLCI.
    Woerd HJ; Wernand MR
    Sensors (Basel); 2015 Oct; 15(10):25663-80. PubMed ID: 26473859
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of an explicit algorithm for remote sensing estimation of chlorophyll a using symbolic regression.
    Tang S; Michel C; Larouche P
    Opt Lett; 2012 Aug; 37(15):3165-7. PubMed ID: 22859120
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of eight band SuperDove imagery for aquatic applications.
    Vanhellemont Q
    Opt Express; 2023 Apr; 31(9):13851-13874. PubMed ID: 37157262
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Remote Sensing Estimation of Chlorophyll-a Concentration in Inland Lakes Based on GOCI Image and Optical Classification of Water Body].
    Feng C; Jin Q; Wang YN; Zhao LN; Lu H; Li YM
    Huan Jing Ke Xue; 2015 May; 36(5):1557-64. PubMed ID: 26314100
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimating pixel-level uncertainty in ocean color retrievals from MODIS.
    Zhang M; Ibrahim A; Franz BA; Ahmad Z; Sayer AM
    Opt Express; 2022 Aug; 30(17):31415-31438. PubMed ID: 36242224
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sensitivity of inherent optical properties from ocean reflectance inversion models to satellite instrument wavelength suites.
    Werdell PJ; McKinna LIW
    Front Earth Sci (Lausanne); 2019; 7():. PubMed ID: 31380374
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of Polymer Atmospheric Correction Algorithm for Hyperspectral Remote Sensing Imagery over Coastal Waters.
    Soppa MA; Silva B; Steinmetz F; Keith D; Scheffler D; Bohn N; Bracher A
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34208507
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Remote Sensing of Chlorophyll-a Concentrations in Lake Hongze Using Long Time Series MERIS Observations].
    Liu G; Li YM; Lü H; Mu M; Lei SH; Wen S; Bi S; Ding XL
    Huan Jing Ke Xue; 2017 Sep; 38(9):3645-3656. PubMed ID: 29965243
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new method for accurate inversion of Forel-Ule index using MODIS images - revealing the water color evolution in China's large lakes and reservoirs over the past two decades.
    Xia K; Wu T; Li X; Wang S; Shen Q
    Water Res; 2024 May; 255():121560. PubMed ID: 38564894
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chlorophyll-a Estimation Around the Antarctica Peninsula Using Satellite Algorithms: Hints from Field Water Leaving Reflectance.
    Zeng C; Xu H; Fischer AM
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27941596
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing.
    Bailey SW; Franz BA; Werdell PJ
    Opt Express; 2010 Mar; 18(7):7521-7. PubMed ID: 20389774
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Atmospheric correction of satellite ocean color imagery: the black pixel assumption.
    Siegel DA; Wang M; Maritorena S; Robinson W
    Appl Opt; 2000 Jul; 39(21):3582-91. PubMed ID: 18349929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.