These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 24840007)
41. The Effect of Interfacial Dipoles on the Metal-Double Interlayers-Semiconductor Structure and Their Application in Contact Resistivity Reduction. Kim SW; Kim SH; Kim GS; Choi C; Choi R; Yu HY ACS Appl Mater Interfaces; 2016 Dec; 8(51):35614-35620. PubMed ID: 27966860 [TBL] [Abstract][Full Text] [Related]
42. Molecular Design Concept for Enhancement Charge Carrier Mobility in OFETs: A Review. Zhou Y; Zhang K; Chen Z; Zhang H Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895626 [TBL] [Abstract][Full Text] [Related]
43. Fluorinated polymer-grafted organic dielectrics for organic field-effect transistors with low-voltage and electrical stability. Kim K; Kim H; Kim SH; Park CE Phys Chem Chem Phys; 2015 Jul; 17(26):16791-7. PubMed ID: 26059493 [TBL] [Abstract][Full Text] [Related]
44. Polymer electrolyte-gated organic field-effect transistors: low-voltage, high-current switches for organic electronics and testbeds for probing electrical transport at high charge carrier density. Panzer MJ; Frisbie CD J Am Chem Soc; 2007 May; 129(20):6599-607. PubMed ID: 17472381 [TBL] [Abstract][Full Text] [Related]
45. Solution processable high dielectric constant nanocomposites based on ZrO2 nanoparticles for flexible organic transistors. Beaulieu MR; Baral JK; Hendricks NR; Tang Y; Briseño AL; Watkins JJ ACS Appl Mater Interfaces; 2013 Dec; 5(24):13096-103. PubMed ID: 24328123 [TBL] [Abstract][Full Text] [Related]
48. Versatile Solution-Processed Reductive Interface Layer for Contact Engineering of Staggered Organic Field-Effect Transistors. Kim DE; Park JW; Seo S; Baeg KJ ACS Appl Mater Interfaces; 2022 Mar; 14(11):13560-13571. PubMed ID: 35258275 [TBL] [Abstract][Full Text] [Related]
49. Efficient modification of Cu electrode with nanometer-sized copper tetracyanoquinodimethane for high performance organic field-effect transistors. Di CA; Yu G; Liu Y; Guo Y; Wu W; Wei D; Zhu D Phys Chem Chem Phys; 2008 May; 10(17):2302-7. PubMed ID: 18414721 [TBL] [Abstract][Full Text] [Related]
50. High-performance low-cost organic field-effect transistors with chemically modified bottom electrodes. Di CA; Yu G; Liu Y; Xu X; Wei D; Song Y; Sun Y; Wang Y; Zhu D; Liu J; Liu X; Wu D J Am Chem Soc; 2006 Dec; 128(51):16418-9. PubMed ID: 17177348 [TBL] [Abstract][Full Text] [Related]
51. Work function modulation and thermal stability of reduced graphene oxide gate electrodes in MOS devices. Misra A; Kalita H; Kottantharayil A ACS Appl Mater Interfaces; 2014 Jan; 6(2):786-94. PubMed ID: 24341793 [TBL] [Abstract][Full Text] [Related]
52. Graphene nanoribbon blends with P3HT for organic electronics. El Gemayel M; Narita A; Dössel LF; Sundaram RS; Kiersnowski A; Pisula W; Hansen MR; Ferrari AC; Orgiu E; Feng X; Müllen K; Samorì P Nanoscale; 2014 Jun; 6(12):6301-14. PubMed ID: 24733615 [TBL] [Abstract][Full Text] [Related]
53. Structure-performance correlations in vapor phase deposited self-assembled nanodielectrics for organic field-effect transistors. DiBenedetto SA; Frattarelli DL; Facchetti A; Ratner MA; Marks TJ J Am Chem Soc; 2009 Aug; 131(31):11080-90. PubMed ID: 19606862 [TBL] [Abstract][Full Text] [Related]
54. Design, synthesis, and characterization of ladder-type molecules and polymers. Air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors via experiment and theory. Usta H; Risko C; Wang Z; Huang H; Deliomeroglu MK; Zhukhovitskiy A; Facchetti A; Marks TJ J Am Chem Soc; 2009 Apr; 131(15):5586-608. PubMed ID: 19331320 [TBL] [Abstract][Full Text] [Related]
56. Air-stable n-type organic field-effect transistors based on solution-processable, electronegative oligomers containing dicyanomethylene-substituted cyclopenta[b]thiophene. Ie Y; Nishida K; Karakawa M; Tada H; Asano A; Saeki A; Seki S; Aso Y Chemistry; 2011 Apr; 17(17):4750-8. PubMed ID: 21433124 [TBL] [Abstract][Full Text] [Related]
57. A Study on Reducing Contact Resistance in Solution-Processed Organic Field-Effect Transistors. Choi S; Fuentes-Hernandez C; Wang CY; Khan TM; Larrain FA; Zhang Y; Barlow S; Marder SR; Kippelen B ACS Appl Mater Interfaces; 2016 Sep; 8(37):24744-52. PubMed ID: 27579570 [TBL] [Abstract][Full Text] [Related]
58. Role of Oxide/Metal Bilayer Electrodes in Solution Processed Organic Field Effect Transistors. Ablat A; Kyndiah A; Houin G; Alic TY; Hirsch L; Abbas M Sci Rep; 2019 Apr; 9(1):6685. PubMed ID: 31040375 [TBL] [Abstract][Full Text] [Related]
59. High performance and stable N-channel organic field-effect transistors by patterned solvent-vapor annealing. Khim D; Baeg KJ; Kim J; Kang M; Lee SH; Chen Z; Facchetti A; Kim DY; Noh YY ACS Appl Mater Interfaces; 2013 Nov; 5(21):10745-52. PubMed ID: 24138585 [TBL] [Abstract][Full Text] [Related]
60. General observation of n-type field-effect behaviour in organic semiconductors. Chua LL; Zaumseil J; Chang JF; Ou EC; Ho PK; Sirringhaus H; Friend RH Nature; 2005 Mar; 434(7030):194-9. PubMed ID: 15758994 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]