These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 24840019)

  • 1. A Fourier-based compressed sensing technique for accelerated CT image reconstruction using first-order methods.
    Choi K; Li R; Nam H; Xing L
    Phys Med Biol; 2014 Jun; 59(12):3097-119. PubMed ID: 24840019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast compressed sensing-based CBCT reconstruction using Barzilai-Borwein formulation for application to on-line IGRT.
    Park JC; Song B; Kim JS; Park SH; Kim HK; Liu Z; Suh TS; Song WY
    Med Phys; 2012 Mar; 39(3):1207-17. PubMed ID: 22380351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerated barrier optimization compressed sensing (ABOCS) reconstruction for cone-beam CT: phantom studies.
    Niu T; Zhu L
    Med Phys; 2012 Jul; 39(7):4588-98. PubMed ID: 22830790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fan beam image reconstruction with generalized Fourier slice theorem.
    Zhao S; Yang K; Yang K
    J Xray Sci Technol; 2014; 22(4):415-36. PubMed ID: 25080112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction.
    Fahimian BP; Zhao Y; Huang Z; Fung R; Mao Y; Zhu C; Khatonabadi M; DeMarco JJ; Osher SJ; McNitt-Gray MF; Miao J
    Med Phys; 2013 Mar; 40(3):031914. PubMed ID: 23464329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalized Fourier slice theorem for cone-beam image reconstruction.
    Zhao SR; Jiang D; Yang K; Yang K
    J Xray Sci Technol; 2015; 23(2):157-88. PubMed ID: 25882729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerated fast iterative shrinkage thresholding algorithms for sparsity-regularized cone-beam CT image reconstruction.
    Xu Q; Yang D; Tan J; Sawatzky A; Anastasio MA
    Med Phys; 2016 Apr; 43(4):1849. PubMed ID: 27036582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of four-dimensional cone-beam computed tomography by compressed sensing with Bregman iteration.
    Choi K; Fahimian BP; Li T; Suh TS; Lei X
    J Xray Sci Technol; 2013; 21(2):177-92. PubMed ID: 23694910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GPU-accelerated regularized iterative reconstruction for few-view cone beam CT.
    Matenine D; Goussard Y; Després P
    Med Phys; 2015 Apr; 42(4):1505-17. PubMed ID: 25832041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the computational implementation of forward and back-projection operations for cone-beam computed tomography.
    Karimi D; Ward R
    Med Biol Eng Comput; 2016 Aug; 54(8):1193-204. PubMed ID: 26438389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ordered-subsets proximal preconditioned gradient algorithm for edge-preserving PET image reconstruction.
    Mehranian A; Rahmim A; Ay MR; Kotasidis F; Zaidi H
    Med Phys; 2013 May; 40(5):052503. PubMed ID: 23635293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fast method based on NESTA to accurately reconstruct CT image from highly undersampled projection measurements.
    He Z; Qiao Q; Li J; Huang M; Zhu S; Huang L
    J Xray Sci Technol; 2016 Nov; 24(6):865-874. PubMed ID: 27612050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iterative CT reconstruction via minimizing adaptively reweighted total variation.
    Zhu L; Niu T; Petrongolo M
    J Xray Sci Technol; 2014; 22(2):227-40. PubMed ID: 24699349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous misalignment correction for approximate circular cone-beam computed tomography.
    Kyriakou Y; Lapp RM; Hillebrand L; Ertel D; Kalender WA
    Phys Med Biol; 2008 Nov; 53(22):6267-89. PubMed ID: 18936522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining Acceleration Techniques for Low-Dose X-Ray Cone Beam Computed Tomography Image Reconstruction.
    Huang HM; Hsiao IT
    Biomed Res Int; 2017; 2017():6753831. PubMed ID: 28676860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fused analytical and iterative reconstruction (AIR) via modified proximal forward-backward splitting: a FDK-based iterative image reconstruction example for CBCT.
    Gao H
    Phys Med Biol; 2016 Oct; 61(19):7187-7204. PubMed ID: 27649259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An efficient iterative CBCT reconstruction approach using gradient projection sparse reconstruction algorithm.
    Lee HC; Song B; Kim JS; Jung JJ; Li HH; Mutic S; Park JC
    Oncotarget; 2016 Dec; 7(52):87342-87350. PubMed ID: 27894103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating iterative algebraic algorithms in terms of convergence and image quality for cone beam CT.
    Qiu W; Pengpan T; Smith ND; Soleimani M
    Comput Methods Programs Biomed; 2013 Mar; 109(3):313-22. PubMed ID: 23164522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A three-dimensional weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT under a circular source trajectory.
    Tang X; Hsieh J; Hagiwara A; Nilsen RA; Thibault JB; Drapkin E
    Phys Med Biol; 2005 Aug; 50(16):3889-905. PubMed ID: 16077234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sparsity-constrained SENSE reconstruction: an efficient implementation using a fast composite splitting algorithm.
    Jiang M; Jin J; Liu F; Yu Y; Xia L; Wang Y; Crozier S
    Magn Reson Imaging; 2013 Sep; 31(7):1218-27. PubMed ID: 23684962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.