These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 24840022)
21. A toxin complex protein from Photorhabdus akhurstii conferred oral insecticidal activity against Galleria mellonella by targeting the midgut epithelium. Santhoshkumar K; Mathur C; Mandal A; Dutta TK Microbiol Res; 2021 Jan; 242():126642. PubMed ID: 33191102 [TBL] [Abstract][Full Text] [Related]
22. Flexibility and strictness in functional replacement of domain III of cry insecticidal proteins from Bacillus thuringiensis. Sakai H; Howlader MT; Ishida Y; Nakaguchi A; Oka K; Ohbayashi K; Yamagiwa M; Hayakawa T J Biosci Bioeng; 2007 Apr; 103(4):381-3. PubMed ID: 17502282 [TBL] [Abstract][Full Text] [Related]
23. Proteomic identification of a novel toxin protein (Txp40) from Xenorhabdus nematophila and its insecticidal activity against larvae of Plutella xylostella. Park JM; Kim M; Min J; Lee SM; Shin KS; Oh SD; Oh SJ; Kim YH J Agric Food Chem; 2012 Apr; 60(16):4053-9. PubMed ID: 22352834 [TBL] [Abstract][Full Text] [Related]
24. No evidence for priming response in Galleria mellonella larvae exposed to toxin protein PirA2B2 from Photorhabdus luminescens TT01: An association with the inhibition of the host cellular immunity. Wu G; Yi Y; Sun J; Li M; Qiu L Vaccine; 2015 Nov; 33(46):6307-13. PubMed ID: 26432910 [TBL] [Abstract][Full Text] [Related]
25. Insecticidal Activity and Histopathological Effects of Vip3Aa Protein from Song F; Lin Y; Chen C; Shao E; Guan X; Huang Z J Microbiol Biotechnol; 2016 Oct; 26(10):1774-1780. PubMed ID: 27435544 [TBL] [Abstract][Full Text] [Related]
26. Combinatorial effect of Photorhabdus luminescens TT01 and Bacillus thuringiensis Vip3Aa16 toxin against Agrotis segetum. Jallouli W; Boukedi H; Sellami S; Frikha F; Abdelkefi-Mesrati L; Tounsi S Toxicon; 2018 Feb; 142():52-57. PubMed ID: 29305079 [TBL] [Abstract][Full Text] [Related]
27. Photorhabdus luminescens toxins TccC3 and TccC5: insecticidal ADP-ribosyltransferases that modify threonine and glutamine. Aktories K; Schmidt G; Lang AE Curr Top Microbiol Immunol; 2015; 384():53-67. PubMed ID: 24908144 [TBL] [Abstract][Full Text] [Related]
28. Activity of Bacillus thuringiensis hybrid protein against a lepidopteran and a coleopteran pest. López-Pazos SA; Rojas Arias AC; Ospina SA; Cerón J FEMS Microbiol Lett; 2010 Jan; 302(2):93-8. PubMed ID: 20002185 [TBL] [Abstract][Full Text] [Related]
29. Cloning and characterization of a mosquito larvicidal toxin produced during vegetative stage of Bacillus sphaericus 2297. Promdonkoy B; Promdonkoy P; Tanapongpipat S; Luxananil P; Chewawiwat N; Audtho M; Panyim S Curr Microbiol; 2004 Aug; 49(2):84-8. PubMed ID: 15297911 [TBL] [Abstract][Full Text] [Related]
30. Cloning and heterologous expression of a novel insecticidal gene (tccC1) from Xenorhabdus nematophilus strain. Joo Lee P; Ahn JY; Kim YH; Wook Kim S; Kim JY; Park JS; Lee J Biochem Biophys Res Commun; 2004 Jul; 319(4):1110-6. PubMed ID: 15194482 [TBL] [Abstract][Full Text] [Related]
31. A 37 kDa Txp40 protein characterized from Photorhabdus luminescens sub sp. akhurstii conferred injectable and oral toxicity to greater wax moth, Galleria mellonella. Mathur C; Kushwah J; Somvanshi VS; Dutta TK Toxicon; 2018 Nov; 154():69-73. PubMed ID: 30278182 [TBL] [Abstract][Full Text] [Related]
32. Molecular cloning and characterization of an insecticidal toxin from Pseudomonas taiwanensis. Liu JR; Lin YD; Chang ST; Zeng YF; Wang SL J Agric Food Chem; 2010 Dec; 58(23):12343-9. PubMed ID: 21062004 [TBL] [Abstract][Full Text] [Related]
33. Insect resistance conferred by 283-kDa Photorhabdus luminescens protein TcdA in Arabidopsis thaliana. Liu D; Burton S; Glancy T; Li ZS; Hampton R; Meade T; Merlo DJ Nat Biotechnol; 2003 Oct; 21(10):1222-8. PubMed ID: 12949536 [TBL] [Abstract][Full Text] [Related]
34. Site-specific antiphagocytic function of the Photorhabdus luminescens type III secretion system during insect colonization. Brugirard-Ricaud K; Duchaud E; Givaudan A; Girard PA; Kunst F; Boemare N; Brehélin M; Zumbihl R Cell Microbiol; 2005 Mar; 7(3):363-71. PubMed ID: 15679839 [TBL] [Abstract][Full Text] [Related]
35. A bacterial binary toxin system that kills both insects and aquatic crustaceans: Photorhabdus insect-related toxins A and B. Wang HC; Lin SJ; Wang HC; Kumar R; Le PT; Leu JH PLoS Pathog; 2023 May; 19(5):e1011330. PubMed ID: 37141203 [TBL] [Abstract][Full Text] [Related]
37. RNA interference-mediated knockdown of three putative aminopeptidases N affects susceptibility of Spodoptera exigua larvae to Bacillus thuringiensis Cry1Ca. Ren XL; Ma Y; Cui JJ; Li GQ J Insect Physiol; 2014 Aug; 67():28-36. PubMed ID: 24932922 [TBL] [Abstract][Full Text] [Related]
38. Plasmid-located pathogenicity determinants of Serratia entomophila, the causal agent of amber disease of grass grub, show similarity to the insecticidal toxins of Photorhabdus luminescens. Hurst MR; Glare TR; Jackson TA; Ronson CW J Bacteriol; 2000 Sep; 182(18):5127-38. PubMed ID: 10960097 [TBL] [Abstract][Full Text] [Related]
39. The opportunistic marine pathogen Vibrio parahaemolyticus becomes virulent by acquiring a plasmid that expresses a deadly toxin. Lee CT; Chen IT; Yang YT; Ko TP; Huang YT; Huang JY; Huang MF; Lin SJ; Chen CY; Lin SS; Lightner DV; Wang HC; Wang AH; Wang HC; Hor LI; Lo CF Proc Natl Acad Sci U S A; 2015 Aug; 112(34):10798-803. PubMed ID: 26261348 [TBL] [Abstract][Full Text] [Related]