These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 24840117)

  • 1. Design and fabrication of new nanostructured SnO2-carbon composite microspheres for fast and stable lithium storage performance.
    Ko YN; Park SB; Kang YC
    Small; 2014 Aug; 10(16):3240-5. PubMed ID: 24840117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perforated Metal Oxide-Carbon Nanotube Composite Microspheres with Enhanced Lithium-Ion Storage Properties.
    Choi SH; Lee JH; Kang YC
    ACS Nano; 2015 Oct; 9(10):10173-85. PubMed ID: 26355350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of Uniquely Structured Yolk-Shell Metal Oxide Microspheres Filled with Nitrogen-Doped Graphitic Carbon with Excellent Li-Ion Storage Performance.
    Kim JH; Kang YC
    Small; 2017 Oct; 13(39):. PubMed ID: 28834282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macroporous Fe3O4/carbon composite microspheres with a short Li+ diffusion pathway for the fast charge/discharge of lithium ion batteries.
    Choi SH; Ko YN; Jung KY; Kang YC
    Chemistry; 2014 Aug; 20(35):11078-83. PubMed ID: 25059480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. General formation of tin nanoparticles encapsulated in hollow carbon spheres for enhanced lithium storage capability.
    Hong YJ; Kang YC
    Small; 2015 May; 11(18):2157-63. PubMed ID: 25565252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and synthesis of micron-sized spherical aggregates composed of hollow Fe2O3 nanospheres for use in lithium-ion batteries.
    Cho JS; Hong YJ; Lee JH; Kang YC
    Nanoscale; 2015 May; 7(18):8361-7. PubMed ID: 25899089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Carbon-Encapsulated Porous SnO2 Anode for Lithium-Ion Batteries with Much Improved Cyclic Stability.
    Huang B; Li X; Pei Y; Li S; Cao X; Massé RC; Cao G
    Small; 2016 Apr; 12(14):1945-55. PubMed ID: 26882498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excellent electrochemical properties of yolk-shell MoO₃ microspheres formed by combustion of molybdenum oxide-carbon composite microspheres.
    Ko YN; Park SB; Kang YC
    Chem Asian J; 2014 Apr; 9(4):1011-5. PubMed ID: 24519906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A SnO2@carbon nanocluster anode material with superior cyclability and rate capability for lithium-ion batteries.
    He M; Yuan L; Hu X; Zhang W; Shu J; Huang Y
    Nanoscale; 2013 Apr; 5(8):3298-305. PubMed ID: 23483088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple ambient hydrolysis deposition of tin oxide into nanoporous carbon to give a stable anode for lithium-ion batteries.
    Raju V; Wang X; Luo W; Ji X
    Chemistry; 2014 Jun; 20(25):7686-91. PubMed ID: 24804844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polystyrene-Templated Aerosol Synthesis of MoS2 -Amorphous Carbon Composite with Open Macropores as Battery Electrode.
    Choi SH; Kang YC
    ChemSusChem; 2015 Jul; 8(13):2260-7. PubMed ID: 26098539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ growth of hierarchical SnO(2) nanosheet arrays on 3D macroporous substrates as high-performance electrodes.
    Zhao X; Liu B; Hu C; Cao M
    Chemistry; 2014 Jan; 20(2):467-73. PubMed ID: 24356889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of core-shell-structured Zn2SnO4-carbon microspheres with superior electrochemical properties by one-pot spray pyrolysis.
    Hong YJ; Kang YC
    Nanoscale; 2015 Jan; 7(2):701-7. PubMed ID: 25429709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yolk bishell Mn(x)Co(1-x)Fe2O4 hollow microspheres and their embedded form in carbon for highly reversible lithium storage.
    Zhang Z; Ji Y; Li J; Tan Q; Zhong Z; Su F
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6300-9. PubMed ID: 25738385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of TiO2 grain size and positioning in three-dimensionally ordered macroporous TiO2/C composite anodes for lithium ion batteries.
    Petkovich ND; Rudisill SG; Wilson BE; Mukherjee A; Stein A
    Inorg Chem; 2014 Jan; 53(2):1100-12. PubMed ID: 24392955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kilogram-scale production of SnO(2) yolk-shell powders by a spray-drying process using dextrin as carbon source and drying additive.
    Choi SH; Kang YC
    Chemistry; 2014 May; 20(19):5835-9. PubMed ID: 24665070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of graphene-encapsulated porous carbon-metal oxide composites as anode materials for lithium-ion batteries.
    Tao S; Yue W; Zhong M; Chen Z; Ren Y
    ACS Appl Mater Interfaces; 2014 May; 6(9):6332-9. PubMed ID: 24766556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile one-pot synthesis of spherical zinc sulfide-carbon nanocomposite powders with superior electrochemical properties as anode materials for Li-ion batteries.
    Jang YS; Kang YC
    Phys Chem Chem Phys; 2013 Oct; 15(39):16437-41. PubMed ID: 23954864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon/two-dimensional MoTe
    Cho JS; Ju HS; Lee JK; Kang YC
    Nanoscale; 2017 Feb; 9(5):1942-1950. PubMed ID: 28098302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-Pot Synthesis of CoSex -rGO Composite Powders by Spray Pyrolysis and Their Application as Anode Material for Sodium-Ion Batteries.
    Park GD; Kang YC
    Chemistry; 2016 Mar; 22(12):4140-6. PubMed ID: 26864320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.