These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 24840294)

  • 1. Multi-scale analysis of optic chiasmal compression by finite element modelling.
    Wang X; Neely AJ; McIlwaine GG; Lueck CJ
    J Biomech; 2014 Jul; 47(10):2292-9. PubMed ID: 24840294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element modeling of optic chiasmal compression.
    Wang X; Neely AJ; McIlwaine GG; Tahtali M; Lillicrap TP; Lueck CJ
    J Neuroophthalmol; 2014 Dec; 34(4):324-30. PubMed ID: 24978206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The anatomy of the optic chiasma and heteronymous hemianopia.
    O'Connell JE
    J Neurol Neurosurg Psychiatry; 1973 Oct; 36(5):710-23. PubMed ID: 4753869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mechanical theory to account for bitemporal hemianopia from chiasmal compression.
    McIlwaine GG; Carrim ZI; Lueck CJ; Chrisp TM
    J Neuroophthalmol; 2005 Mar; 25(1):40-3. PubMed ID: 15756133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualization of Nerve Fiber Orientations in the Human Optic Chiasm Using Photomicrographic Image Analysis.
    Jain NS; Jain SV; Wang X; Neely AJ; Tahtali M; Jain S; Lueck CJ
    Invest Ophthalmol Vis Sci; 2015 Oct; 56(11):6734-9. PubMed ID: 26567784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifocal Visual Evoked Potential in Eyes With Temporal Hemianopia From Chiasmal Compression: Correlation With Standard Automated Perimetry and OCT Findings.
    Sousa RM; Oyamada MK; Cunha LP; Monteiro MLR
    Invest Ophthalmol Vis Sci; 2017 Sep; 58(11):4436-4449. PubMed ID: 28863215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wilbrand's knee of the primate optic chiasm is an artefact of monocular enucleation.
    Horton JC
    Trans Am Ophthalmol Soc; 1997; 95():579-609. PubMed ID: 9440188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the distribution pattern of the circumpapillary retinal nerve fibre layer from the nasal hemiretina.
    Ueda K; Kanamori A; Akashi A; Matsumoto Y; Yamada Y; Nakamura M
    Br J Ophthalmol; 2015 Oct; 99(10):1419-23. PubMed ID: 25813832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonuniform pressure generation in the optic chiasm may explain bitemporal hemianopsia.
    Kosmorsky GS; Dupps WJ; Drake RL
    Ophthalmology; 2008 Mar; 115(3):560-5. PubMed ID: 18082887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different rates of axonal degeneration in the crossed and uncrossed retinofugal pathways of Monodelphis domestica.
    Guillery RW; Taylor JS
    J Neurocytol; 1993 Sep; 22(9):707-16. PubMed ID: 8270955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between optical coherence tomography, pattern electroretinogram and automated perimetry in eyes with temporal hemianopia from chiasmal compression.
    Monteiro ML; Cunha LP; Costa-Cunha LV; Maia OO; Oyamada MK
    Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):3535-41. PubMed ID: 19264884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation of MRI Findings With Patterns of Visual Field Loss in Patients With Pituitary Tumors.
    Kane EJ; Ashton DE; Mews PJ; Reid K; Neely A; Lueck CJ
    J Neuroophthalmol; 2019 Sep; 39(3):333-338. PubMed ID: 30807381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The detection of macular analysis by SD-OCT for optic chiasmal compression neuropathy and nasotemporal overlap.
    Akashi A; Kanamori A; Ueda K; Matsumoto Y; Yamada Y; Nakamura M
    Invest Ophthalmol Vis Sci; 2014 Jul; 55(7):4667-72. PubMed ID: 25015351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of axonal degeneration along the human visual pathway using diffusion trace analysis.
    Ueki S; Fujii Y; Matsuzawa H; Takagi M; Abe H; Kwee IL; Nakada T
    Am J Ophthalmol; 2006 Oct; 142(4):591-6. PubMed ID: 17011850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation in the Anatomy of the Normal Human Optic Chiasm: An MRI Study.
    Bosler NSI; Ashton D; Neely AJ; Lueck CJ
    J Neuroophthalmol; 2021 Jun; 41(2):194-199. PubMed ID: 32141976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible Bitemporal Hemihypokinetic Pupil Without Hemianopia: A New Chiasmal Sign.
    Pentiado Junior JAM; Nakamura EY; da Silva LR; Marques PA; da Silva NO; de Oliveira RS; Simao MLH
    Neuroophthalmology; 2022; 46(5):327-334. PubMed ID: 36337234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early development of the optic chiasm in the gray short-tailed opossum, Monodelphis domestica.
    Taylor JS; Guillery RW
    J Comp Neurol; 1994 Dec; 350(1):109-21. PubMed ID: 7860795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A case of traumatic chiasmal syndrome presenting with bitemporal upper quadrantanopsia].
    Miyakita Y; Taguchi Y; Matsuzawa M; Nakayama H; Sekino H
    No Shinkei Geka; 2002 May; 30(5):547-50. PubMed ID: 11993180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical coherence tomography detects characteristic retinal nerve fiber layer thickness corresponding to band atrophy of the optic discs.
    Kanamori A; Nakamura M; Matsui N; Nagai A; Nakanishi Y; Kusuhara S; Yamada Y; Negi A
    Ophthalmology; 2004 Dec; 111(12):2278-83. PubMed ID: 15582087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the retinal nerve fibre layer and ganglion cell complex thickness in pituitary macroadenomas without optic chiasmal compression.
    Cennamo G; Auriemma RS; Cardone D; Grasso LF; Velotti N; Simeoli C; Di Somma C; Pivonello R; Colao A; de Crecchio G
    Eye (Lond); 2015 Jun; 29(6):797-802. PubMed ID: 25853400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.