These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 24840394)

  • 21. Nitrogen/gold codoping of the TiO2(101) anatase surface. A theoretical study based on DFT calculations.
    Ortega Y; Hernández NC; Menéndez-Proupin E; Graciani J; Sanz JF
    Phys Chem Chem Phys; 2011 Jun; 13(23):11340-50. PubMed ID: 21566817
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spectroscopic properties of doped and defective semiconducting oxides from hybrid density functional calculations.
    Di Valentin C; Pacchioni G
    Acc Chem Res; 2014 Nov; 47(11):3233-41. PubMed ID: 24828320
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A relationship between structural and electronic order-disorder effects and optical properties in crystalline TiO2 nanomaterials.
    Silva Junior E; La Porta FA; Liu MS; Andrés J; Varela JA; Longo E
    Dalton Trans; 2015 Feb; 44(7):3159-75. PubMed ID: 25579134
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tuning Phase Composition of TiO2 by Sn(4+) Doping for Efficient Photocatalytic Hydrogen Generation.
    Wang F; Ho JH; Jiang Y; Amal R
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):23941-8. PubMed ID: 26444102
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theoretical study of N-doped TiO2 rutile crystals.
    Yang K; Dai Y; Huang B; Han S
    J Phys Chem B; 2006 Nov; 110(47):24011-4. PubMed ID: 17125371
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Density functional study of the interfacial electron transfer pathway for monolayer-adsorbed InN on the TiO(2) anatase (101) surface.
    Lin JS; Chou WC; Lu SY; Jang GJ; Tseng BR; Li YT
    J Phys Chem B; 2006 Nov; 110(46):23460-6. PubMed ID: 17107198
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Room-temperature synthesis of iron-doped anatase TiO₂ for lithium-ion batteries and photocatalysis.
    Andriamiadamanana C; Laberty-Robert C; Sougrati MT; Casale S; Davoisne C; Patra S; Sauvage F
    Inorg Chem; 2014 Oct; 53(19):10129-39. PubMed ID: 25211065
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships.
    Jing L; Xin B; Yuan F; Xue L; Wang B; Fu H
    J Phys Chem B; 2006 Sep; 110(36):17860-5. PubMed ID: 16956273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. First-principles calculations on electronic structures of N/V-doped and N-V-dodoped anatase TiO2 (101) surfaces.
    Zhao Z; Li Z; Zou Z
    Chemphyschem; 2012 Dec; 13(17):3836-47. PubMed ID: 23055277
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ferromagnetic Properties of N-Doped and Undoped TiO₂ Rutile Single-Crystal Wafers with Addition of Tungsten Trioxide.
    Xu J; Wang H; Zhou Z; Zou Z
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30314264
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reactivity of sub 1 nm supported clusters: (TiO2)n clusters supported on rutile TiO2 (110).
    Iwaszuk A; Nolan M
    Phys Chem Chem Phys; 2011 Mar; 13(11):4963-73. PubMed ID: 21331430
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probing the electronic structure and photoactivation process of nitrogen-doped TiO2 using DRS, PL, and EPR.
    Zhang Z; Long J; Xie X; Lin H; Zhou Y; Yuan R; Dai W; Ding Z; Wang X; Fu X
    Chemphyschem; 2012 Apr; 13(6):1542-50. PubMed ID: 22407673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Density functional characterization of the electronic structure and visible-light absorption of Cr-doped anatase TiO(2).
    Yang K; Dai Y; Huang B
    Chemphyschem; 2009 Sep; 10(13):2327-33. PubMed ID: 19569090
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modification mechanism of praseodymium doping for the photocatalytic performance of TiO2: a combined experimental and theoretical study.
    Duan ZG; Zhao ZY; Shi QN
    Phys Chem Chem Phys; 2015 Jul; 17(29):19087-95. PubMed ID: 26130404
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis, characterization, and photocatalytic activity of TiO(2-x)N(x) nanocatalyst.
    Wang YQ; Yu XJ; Sun DZ
    J Hazard Mater; 2007 Jun; 144(1-2):328-33. PubMed ID: 17116365
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study.
    Zhang T; Zhu Z; Chen H; Bai Y; Xiao S; Zheng X; Xue Q; Yang S
    Nanoscale; 2015 Feb; 7(7):2933-40. PubMed ID: 25587830
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The interplay between dopants and oxygen vacancies in the magnetism of V-doped TiO2.
    Grau-Crespo R; Schwingenschlögl U
    J Phys Condens Matter; 2011 Aug; 23(33):334216. PubMed ID: 21813944
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Is the band gap of pristine TiO(2) narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts?
    Serpone N
    J Phys Chem B; 2006 Dec; 110(48):24287-93. PubMed ID: 17134177
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of non-magnetic impurities on the magnetic states of anatase TiO₂.
    Pandey SK; Choudhary RJ
    J Phys Condens Matter; 2011 Jul; 23(27):276005. PubMed ID: 21690657
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing the electronic structure and band gap evolution of titanium oxide clusters (TiO(2))(n)(-) (n = 1-10) using photoelectron spectroscopy.
    Zhai HJ; Wang LS
    J Am Chem Soc; 2007 Mar; 129(10):3022-6. PubMed ID: 17300196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.