These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 24840422)
1. Fluorescence detection for phosphate monitoring using reverse injection analysis. Kröckel L; Lehmann H; Wieduwilt T; Schmidt MA Talanta; 2014 Jul; 125():107-13. PubMed ID: 24840422 [TBL] [Abstract][Full Text] [Related]
2. A bimodal optoelectronic flow-through detector for phosphate determination. Fiedoruk M; Mieczkowska E; Koncki R; Tymecki L Talanta; 2014 Oct; 128():211-4. PubMed ID: 25059150 [TBL] [Abstract][Full Text] [Related]
3. The use of on-line UV photoreduction in the flow analysis determination of dissolved reactive phosphate in natural waters. Nagul EA; McKelvie ID; Kolev SD Talanta; 2015 Feb; 133():155-61. PubMed ID: 25435242 [TBL] [Abstract][Full Text] [Related]
4. Verification of performance with the automated direct optical TIRF immunosensor (River Analyser) in single and multi-analyte assays with real water samples. Tschmelak J; Proll G; Gauglitz G Biosens Bioelectron; 2004 Nov; 20(4):743-52. PubMed ID: 15522589 [TBL] [Abstract][Full Text] [Related]
5. The use of a polymer inclusion membrane for separation and preconcentration of orthophosphate in flow analysis. Nagul EA; Fontàs C; McKelvie ID; Cattrall RW; Kolev SD Anal Chim Acta; 2013 Nov; 803():82-90. PubMed ID: 24216200 [TBL] [Abstract][Full Text] [Related]
6. Development of a flow method for the determination of phosphate in estuarine and freshwaters--comparison of flow cells in spectrophotometric sequential injection analysis. Mesquita RB; Ferreira MT; Tóth IV; Bordalo AA; McKelvie ID; Rangel AO Anal Chim Acta; 2011 Sep; 701(1):15-22. PubMed ID: 21763803 [TBL] [Abstract][Full Text] [Related]
7. Photometric flow injection determination of phosphate on a PDMS microchip using an optical detection system assembled with an organic light emitting diode and an organic photodiode. Liu R; Ishimatsu R; Yahiro M; Adachi C; Nakano K; Imato T Talanta; 2015 Jan; 132():96-105. PubMed ID: 25476284 [TBL] [Abstract][Full Text] [Related]
8. A novel automatic flow method with direct-injection photometric detector for determination of dissolved reactive phosphorus in wastewater and freshwater samples. Koronkiewicz S; Trifescu M; Smoczynski L; Ratnaweera H; Kalinowski S Environ Monit Assess; 2018 Feb; 190(3):133. PubMed ID: 29435674 [TBL] [Abstract][Full Text] [Related]
9. A miniature and field-applicable multipumping flow analyzer for ammonium monitoring in seawater with fluorescence detection. Horstkotte B; Duarte CM; Cerdà V Talanta; 2011 Jul; 85(1):380-5. PubMed ID: 21645713 [TBL] [Abstract][Full Text] [Related]
10. Loop flow analysis of dissolved reactive phosphorus in aqueous samples. Ma J; Li Q; Yuan D Talanta; 2014 Jun; 123():218-23. PubMed ID: 24725885 [TBL] [Abstract][Full Text] [Related]
11. Continuous flow method for the simultaneous determination of phosphate/arsenate based on their different kinetic characteristics. Borgnino L; Pfaffen V; Depetris PJ; Palomeque M Talanta; 2011 Sep; 85(3):1310-6. PubMed ID: 21807188 [TBL] [Abstract][Full Text] [Related]
12. A high performance microfluidic analyser for phosphate measurements in marine waters using the vanadomolybdate method. Legiret FE; Sieben VJ; Woodward EM; Abi Kaed Bey SK; Mowlem MC; Connelly DP; Achterberg EP Talanta; 2013 Nov; 116():382-7. PubMed ID: 24148419 [TBL] [Abstract][Full Text] [Related]
13. Sequential injection system for simultaneous determination of sucrose and phosphate in cola drinks using paired emitter-detector diode sensor. Saetear P; Khamtau K; Ratanawimarnwong N; Sereenonchai K; Nacapricha D Talanta; 2013 Oct; 115():361-6. PubMed ID: 24054603 [TBL] [Abstract][Full Text] [Related]
14. Development of a flow-injection analysis system with fluorescence detection for gatifloxacin determination in organized medium. Lima Vaz MF; de Oliveira JV; Cassella RJ; Pacheco WF Luminescence; 2015 May; 30(3):337-42. PubMed ID: 25060163 [TBL] [Abstract][Full Text] [Related]
15. Hybrid flow system integrating a miniaturized optoelectronic detector for on-line dynamic fractionation and fluorometric determination of bioaccessible orthophosphate in soils. Fiedoruk M; Cocovi-Solberg DJ; Tymecki Ł; Koncki R; Miró M Talanta; 2015 Feb; 133():59-65. PubMed ID: 25435227 [TBL] [Abstract][Full Text] [Related]
16. Automatic flow analysis method to determine traces of Mn²⁺ in sea and drinking waters by a kinetic catalytic process using LWCC-spectrophotometric detection. Chaparro L; Ferrer L; Leal LO; Cerdà V Talanta; 2016 Feb; 148():583-8. PubMed ID: 26653487 [TBL] [Abstract][Full Text] [Related]
17. Development of an automated flow injection analysis system for determination of phosphate in nutrient solutions. Karadağ S; Görüşük EM; Çetinkaya E; Deveci S; Dönmez KB; Uncuoğlu E; Doğu M J Sci Food Agric; 2018 Aug; 98(10):3926-3934. PubMed ID: 29369357 [TBL] [Abstract][Full Text] [Related]
18. Fluorescence resonance energy transfer between acridine orange and rhodamine 6G and its analytical application for vitamin B12 with flow-injection laser-induced fluorescence detection. Xu H; Li Y; Liu C; Wu Q; Zhao Y; Lu L; Tang H Talanta; 2008 Oct; 77(1):176-81. PubMed ID: 18804617 [TBL] [Abstract][Full Text] [Related]
19. The determination of trace lead in drinking water by flow injection spectrophotometry. Dai S; Zhang X; Yu L; Yang Y Spectrochim Acta A Mol Biomol Spectrosc; 2010 Jan; 75(1):330-3. PubMed ID: 19963434 [TBL] [Abstract][Full Text] [Related]