These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 24840441)
1. Statistical analysis for improving data precision in the SPME GC-MS analysis of blackberry (Rubus ulmifolius Schott) volatiles. D'Agostino MF; Sanz J; Martínez-Castro I; Giuffrè AM; Sicari V; Soria AC Talanta; 2014 Jul; 125():248-56. PubMed ID: 24840441 [TBL] [Abstract][Full Text] [Related]
2. Optimization of a Solid-Phase Microextraction method for the Gas Chromatography-Mass Spectrometry analysis of blackberry (Rubus ulmifolius Schott) fruit volatiles. D'Agostino MF; Sanz J; Sanz ML; Giuffrè AM; Sicari V; Soria AC Food Chem; 2015 Jul; 178():10-7. PubMed ID: 25704677 [TBL] [Abstract][Full Text] [Related]
3. Study of the precision in the purge-and-trap-gas chromatography-mass spectrometry analysis of volatile compounds in honey. Soria AC; Martínez-Castro I; Sanz J J Chromatogr A; 2009 Apr; 1216(15):3300-4. PubMed ID: 19203763 [TBL] [Abstract][Full Text] [Related]
4. Aroma Profile of Rubus ulmifolius Flowers and Fruits During Different Ontogenetic Phases. Bandeira Reidel RV; Melai B; Cioni P; Flamini G; Pistelli L Chem Biodivers; 2016 Dec; 13(12):1776-1784. PubMed ID: 27449284 [TBL] [Abstract][Full Text] [Related]
5. Differentiation of wines according to grape variety and geographical origin based on volatiles profiling using SPME-MS and SPME-GC/MS methods. Ziółkowska A; Wąsowicz E; Jeleń HH Food Chem; 2016 Dec; 213():714-720. PubMed ID: 27451239 [TBL] [Abstract][Full Text] [Related]
6. Discrimination of Chinese vinegars based on headspace solid-phase microextraction-gas chromatography mass spectrometry of volatile compounds and multivariate analysis. Xiao Z; Dai S; Niu Y; Yu H; Zhu J; Tian H; Gu Y J Food Sci; 2011 Oct; 76(8):C1125-35. PubMed ID: 22417575 [TBL] [Abstract][Full Text] [Related]
7. Application of solid phase-microextraction (SPME) and electronic nose techniques to differentiate volatiles of sesame oils prepared with diverse roasting conditions. Park MH; Jeong MK; Yeo J; Son HJ; Lim CL; Hong EJ; Noh BS; Lee J J Food Sci; 2011; 76(1):C80-8. PubMed ID: 21535659 [TBL] [Abstract][Full Text] [Related]
8. Characterization of volatile substances in apples from Rosaceae family by headspace solid-phase microextraction followed by GC-qMS. Ferreira L; Perestrelo R; Caldeira M; Câmara JS J Sep Sci; 2009 Jun; 32(11):1875-88. PubMed ID: 19425016 [TBL] [Abstract][Full Text] [Related]
9. Investigation of volatile compounds in two raspberry cultivars by two headspace techniques: solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) and proton-transfer reaction-mass spectrometry (PTR-MS). Aprea E; Biasioli F; Carlin S; Endrizzi I; Gasperi F J Agric Food Chem; 2009 May; 57(10):4011-8. PubMed ID: 19348421 [TBL] [Abstract][Full Text] [Related]
10. Metabolite profiling on apple volatile content based on solid phase microextraction and gas-chromatography time of flight mass spectrometry. Aprea E; Gika H; Carlin S; Theodoridis G; Vrhovsek U; Mattivi F J Chromatogr A; 2011 Jul; 1218(28):4517-24. PubMed ID: 21641602 [TBL] [Abstract][Full Text] [Related]
11. SPME-GC-MS versus Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) analyses for the study of volatile compound generation and oxidation status during dry fermented sausage processing. Olivares A; Dryahina K; Navarro JL; Smith D; Spanĕl P; Flores M J Agric Food Chem; 2011 Mar; 59(5):1931-8. PubMed ID: 21294565 [TBL] [Abstract][Full Text] [Related]
12. Development and validation of automatic HS-SPME with a gas chromatography-ion trap/mass spectrometry method for analysis of volatiles in wines. Paula Barros E; Moreira N; Elias Pereira G; Leite SG; Moraes Rezende C; Guedes de Pinho P Talanta; 2012 Nov; 101():177-86. PubMed ID: 23158309 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the volatile profiles of beer using headspace solid-phase microextraction and gas chromatography-mass spectrometry. Rossi S; Sileoni V; Perretti G; Marconi O J Sci Food Agric; 2014 Mar; 94(5):919-28. PubMed ID: 23929274 [TBL] [Abstract][Full Text] [Related]
14. Multiple headspace-solid-phase microextraction: an application to quantification of mushroom volatiles. Costa R; Tedone L; De Grazia S; Dugo P; Mondello L Anal Chim Acta; 2013 Apr; 770():1-6. PubMed ID: 23498680 [TBL] [Abstract][Full Text] [Related]
16. Differentiation of raw spirits of rye, corn and potato using chromatographic profiles of volatile compounds. Ziółkowska A; Jeleń HH J Sci Food Agric; 2012 Oct; 92(13):2630-7. PubMed ID: 22495666 [TBL] [Abstract][Full Text] [Related]
17. Traceability of honey origin based on volatiles pattern processing by artificial neural networks. Cajka T; Hajslova J; Pudil F; Riddellova K J Chromatogr A; 2009 Feb; 1216(9):1458-62. PubMed ID: 19150717 [TBL] [Abstract][Full Text] [Related]
18. Optimisation of solid-phase microextraction combined with gas chromatography-mass spectrometry based methodology to establish the global volatile signature in pulp and skin of Vitis vinifera L. grape varieties. Perestrelo R; Barros AS; Rocha SM; Câmara JS Talanta; 2011 Sep; 85(3):1483-93. PubMed ID: 21807213 [TBL] [Abstract][Full Text] [Related]
19. Investigation of volatile organic metabolites in lung cancer pleural effusions by solid-phase microextraction and gas chromatography/mass spectrometry. Liu H; Wang H; Li C; Wang L; Pan Z; Wang L J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Jan; 945-946():53-9. PubMed ID: 24321761 [TBL] [Abstract][Full Text] [Related]
20. Comparison of headspace solid-phase microextraction, headspace single-drop microextraction and hydrodistillation for chemical screening of volatiles in Myrtus communis L. Moradi M; Kaykhaii M; Ghiasvand AR; Shadabi S; Salehinia A Phytochem Anal; 2012; 23(4):379-86. PubMed ID: 22069217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]