These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 24840741)

  • 1. Dynamic control of Förster energy transfer in a photonic environment.
    Schleifenbaum F; Kern AM; Konrad A; Meixner AJ
    Phys Chem Chem Phys; 2014 Jul; 16(25):12812-7. PubMed ID: 24840741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microcavities: tailoring the optical properties of single quantum emitters.
    Bär S; Chizhik A; Gutbrod R; Schleifenbaum F; Chizhik A; Meixner AJ
    Anal Bioanal Chem; 2010 Jan; 396(1):3-14. PubMed ID: 19908031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitation energy transfer between closely spaced multichromophoric systems: effects of band mixing and intraband relaxation.
    Didraga C; Malyshev VA; Knoester J
    J Phys Chem B; 2006 Sep; 110(38):18818-27. PubMed ID: 16986872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A revisitation of the Förster energy transfer near a metallic spherical nanoparticle: (1) Efficiency enhancement or reduction? (2) The control of the Förster radius of the unbounded medium. (3) The impact of the local density of states.
    Gonzaga-Galeana JA; Zurita-Sánchez JR
    J Chem Phys; 2013 Dec; 139(24):244302. PubMed ID: 24387365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multichromophoric Förster resonance energy transfer from b800 to b850 in the light harvesting complex 2: evidence for subtle energetic optimization by purple bacteria.
    Jang S; Newton MD; Silbey RJ
    J Phys Chem B; 2007 Jun; 111(24):6807-14. PubMed ID: 17439170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An analytical continuation approach for evaluating emission lineshapes of molecular aggregates and the adequacy of multichromophoric Förster theory.
    Banchi L; Costagliola G; Ishizaki A; Giorda P
    J Chem Phys; 2013 May; 138(18):184107. PubMed ID: 23676029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient time-domain implementation of the multichromophoric Förster resonant energy transfer method.
    Zhong K; Nguyen HL; Do TN; Tan HS; Knoester J; Jansen TLC
    J Chem Phys; 2023 Feb; 158(6):064103. PubMed ID: 36792497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Förster resonant energy transfer in orthogonally arranged chromophores.
    Langhals H; Esterbauer AJ; Walter A; Riedle E; Pugliesi I
    J Am Chem Soc; 2010 Dec; 132(47):16777-82. PubMed ID: 21053962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A theoretical investigation of the influence of gold nanosphere size on the decay and energy transfer rates and efficiencies of quantum emitters.
    Marocico CA; Zhang X; Bradley AL
    J Chem Phys; 2016 Jan; 144(2):024108. PubMed ID: 26772555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beyond Förster resonance energy transfer in biological and nanoscale systems.
    Beljonne D; Curutchet C; Scholes GD; Silbey RJ
    J Phys Chem B; 2009 May; 113(19):6583-99. PubMed ID: 19331333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer.
    Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL
    ACS Nano; 2014 Feb; 8(2):1273-83. PubMed ID: 24490807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards building artificial light harvesting complexes: enhanced singlet-singlet energy transfer between donor and acceptor pairs bound to albumins.
    Kumar CV; Duff MR
    Photochem Photobiol Sci; 2008 Dec; 7(12):1522-30. PubMed ID: 19037505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalization of the Forster resonance energy transfer theory for quantum mechanical modulation of the donor-acceptor coupling.
    Jang S
    J Chem Phys; 2007 Nov; 127(17):174710. PubMed ID: 17994845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beyond the Förster theory of excitation energy transfer: importance of higher-order processes in supramolecular antenna systems.
    May V
    Dalton Trans; 2009 Dec; (45):10086-105. PubMed ID: 19904437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling the dynamics of Förster resonance energy transfer inside a tunable sub-wavelength Fabry-Pérot-resonator.
    Konrad A; Metzger M; Kern AM; Brecht M; Meixner AJ
    Nanoscale; 2015 Jun; 7(22):10204-9. PubMed ID: 25988852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoherence in weakly coupled excitonic complexes.
    Mančal T; Balevičius V; Valkunas L
    J Phys Chem A; 2011 Apr; 115(16):3845-58. PubMed ID: 21338152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photonic effects on the Förster resonance energy transfer efficiency.
    Rabouw FT; den Hartog SA; Senden T; Meijerink A
    Nat Commun; 2014 Apr; 5():3610. PubMed ID: 24694758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Förster energy transfer in an optical microcavity.
    Andrew P; Barnes WL
    Science; 2000 Oct; 290(5492):785-8. PubMed ID: 11052938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient intramolecular energy transfer in single endcapped conjugated polymer molecules in the absence of appreciable spectral overlap.
    Becker K; Lupton JM; Feldmann J; Setayesh S; Grimsdale AC; Müllen K
    J Am Chem Soc; 2006 Jan; 128(3):680-1. PubMed ID: 16417332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shared-mode assisted resonant energy transfer in the weak coupling regime.
    Hennebicq E; Beljonne D; Curutchet C; Scholes GD; Silbey RJ
    J Chem Phys; 2009 Jun; 130(21):214505. PubMed ID: 19508074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.