BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 24840953)

  • 1. Response surface optimization of lyoprotectant for Lactobacillus bulgaricus during vacuum freeze-drying.
    Chen H; Chen S; Li C; Shu G
    Prep Biochem Biotechnol; 2015; 45(5):463-75. PubMed ID: 24840953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of sugar alcohol and proteins on the survival of Lactobacillus bulgaricus LB6 during freeze drying.
    Chen H; Chen S; Chen H; Wu Y; Shu G
    Acta Sci Pol Technol Aliment; 2015; 14(2):117-124. PubMed ID: 28068009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of various sugars added to growth and drying media upon thermotolerance and survival throughout storage of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus.
    Carvalho AS; Silva J; Ho P; Teixeira P; Malcata FX; Gibbs P
    Biotechnol Prog; 2004; 20(1):248-54. PubMed ID: 14763849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of a protective medium for enhancing the viability of freeze-dried Lactobacillus delbrueckii subsp. bulgaricus based on response surface methodology.
    Huang L; Lu Z; Yuan Y; Lü F; Bie X
    J Ind Microbiol Biotechnol; 2006 Jan; 33(1):55-61. PubMed ID: 16244855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Storage stability and sourdough acidification kinetic of freeze-dried Lactobacillus curvatus N19 under optimized cryoprotectant formulation.
    Gul LB; Con AH; Gul O
    Cryobiology; 2020 Oct; 96():122-129. PubMed ID: 32712072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of culture conditions and preconditioning on survival of Lactobacillus delbrueckii subspecies bulgaricus ND02 during lyophilization.
    Shao Y; Gao S; Guo H; Zhang H
    J Dairy Sci; 2014 Mar; 97(3):1270-80. PubMed ID: 24393172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of six substances on the growth and freeze-drying of Lactobacillus delbrueckii subsp. bulgaricus.
    Chen H; Huang J; Shi X; Li Y; Liu Y
    Acta Sci Pol Technol Aliment; 2017; 16(4):403-412. PubMed ID: 29241319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of composite cryoprotectant for freeze-drying Bifidobacterium bifidum BB01 by response surface methodology.
    Chen H; Tian M; Chen L; Cui X; Meng J; Shu G
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):1559-1569. PubMed ID: 31007080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collapse temperature of freeze-dried Lactobacillus bulgaricus suspensions and protective media.
    Fonseca F; Passot S; Cunin O; Marin M
    Biotechnol Prog; 2004; 20(1):229-38. PubMed ID: 14763847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of protective agents on the viability of geotrichum candidum during freeze-drying and storage.
    Hamoudi L; Goulet J; Ratti C
    J Food Sci; 2007 Mar; 72(2):M45-9. PubMed ID: 17995841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimising the viability during storage of freeze-dried cell preparations of Campylobacter jejuni.
    Portner DC; Leuschner RG; Murray BS
    Cryobiology; 2007 Jun; 54(3):265-70. PubMed ID: 17482158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid optimization of protein freeze-drying formulations using ultra scale-down and factorial design of experiment in microplates.
    Grant Y; Matejtschuk P; Dalby PA
    Biotechnol Bioeng; 2009 Dec; 104(5):957-64. PubMed ID: 19530082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of Protective Agents for The Freeze-Drying of
    Nasran HS; Mohd Yusof H; Halim M; Abdul Rahman N
    Molecules; 2020 Jun; 25(11):. PubMed ID: 32512825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A case study on stress preconditioning of a Lactobacillus strain prior to freeze-drying.
    Bergenholtz ÅS; Wessman P; Wuttke A; Håkansson S
    Cryobiology; 2012 Jun; 64(3):152-9. PubMed ID: 22266474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Survival and stability of Lactobacillus fermentum and Wickerhamomyces anomalus strains upon lyophilisation with different cryoprotectant agents.
    Stefanello RF; Nabeshima EH; Iamanaka BT; Ludwig A; Fries LLM; Bernardi AO; Copetti MV
    Food Res Int; 2019 Jan; 115():90-94. PubMed ID: 30599986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimisation of initial cell concentration enhances freeze-drying tolerance of Pseudomonas chlororaphis.
    Palmfeldt J; Rådström P; Hahn-Hägerdal B
    Cryobiology; 2003 Aug; 47(1):21-9. PubMed ID: 12963409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of protective agents on membrane fluidity of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus.
    Martos GI; Minahk CJ; de Valdez GF; Morero R
    Lett Appl Microbiol; 2007 Sep; 45(3):282-8. PubMed ID: 17718840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Freeze-drying of Lactobacillus coryniformis Si3--effects of sucrose concentration, cell density, and freezing rate on cell survival and thermophysical properties.
    Schoug A; Olsson J; Carlfors J; Schnürer J; Håkansson S
    Cryobiology; 2006 Aug; 53(1):119-27. PubMed ID: 16756971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive optimization of composite cryoprotectant for
    Guowei S; Yang X; Li C; Huang D; Lei Z; He C
    Prep Biochem Biotechnol; 2019; 49(9):846-857. PubMed ID: 31244369
    [No Abstract]   [Full Text] [Related]  

  • 20. NaCl stress impact on the key enzymes in glycolysis from Lactobacillus bulgaricus during freeze-drying.
    Li C; Sun J; Qi X; Liu L
    Braz J Microbiol; 2015; 46(4):1193-9. PubMed ID: 26691481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.