These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 24841148)

  • 1. GPU-based multi-volume ray casting within VTK for medical applications.
    Bozorgi M; Lindseth F
    Int J Comput Assist Radiol Surg; 2015 Mar; 10(3):293-300. PubMed ID: 24841148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Design of a volume-rendering toolkit using GPU-based ray-casting].
    Liu WQ; Chen CX; Lu LN
    Zhongguo Yi Liao Qi Xie Za Zhi; 2009 Sep; 33(5):356-9. PubMed ID: 20073244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GPU-based Volume Rendering for Medical Image Visualization.
    Heng Y; Gu L
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():5145-8. PubMed ID: 17281405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast perspective volume ray casting method using GPU-based acceleration techniques for translucency rendering in 3D endoluminal CT colonography.
    Lee TH; Lee J; Lee H; Kye H; Shin YG; Kim SH
    Comput Biol Med; 2009 Aug; 39(8):657-66. PubMed ID: 19541296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PRISM: An open source framework for the interactive design of GPU volume rendering shaders.
    Drouin S; Collins DL
    PLoS One; 2018; 13(3):e0193636. PubMed ID: 29534069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time visualization of large volume datasets on standard PC hardware.
    Xie K; Yang J; Zhu YM
    Comput Methods Programs Biomed; 2008 May; 90(2):117-23. PubMed ID: 18243401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imalytics Preclinical: Interactive Analysis of Biomedical Volume Data.
    Gremse F; Stärk M; Ehling J; Menzel JR; Lammers T; Kiessling F
    Theranostics; 2016; 6(3):328-41. PubMed ID: 26909109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time stereographic rendering and display of medical images with programmable GPUs.
    Wang XH; Good WF
    Comput Med Imaging Graph; 2008 Mar; 32(2):118-23. PubMed ID: 18061402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchronized 2D/3D optical mapping for interactive exploration and real-time visualization of multi-function neurological images.
    Zhang Q; Alexander M; Ryner L
    Comput Med Imaging Graph; 2013; 37(7-8):552-67. PubMed ID: 23968722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time visualized freehand 3D ultrasound reconstruction based on GPU.
    Dai Y; Tian J; Dong D; Yan G; Zheng H
    IEEE Trans Inf Technol Biomed; 2010 Nov; 14(6):1338-45. PubMed ID: 20813647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel generation of digitally reconstructed radiographs on heterogeneous multi-GPU workstations.
    Abdellah M; Abdelaziz A; Eslam Ali EM; Abdelaziz S; Sayed A; Owis MI; Eldeib A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3953-3956. PubMed ID: 28269150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GPU-accelerated Kernel Regression Reconstruction for Freehand 3D Ultrasound Imaging.
    Wen T; Li L; Zhu Q; Qin W; Gu J; Yang F; Xie Y
    Ultrason Imaging; 2017 Jul; 39(4):240-259. PubMed ID: 28627330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fast forward projection using multithreads for multirays on GPUs in medical image reconstruction.
    Chou CY; Chuo YY; Hung Y; Wang W
    Med Phys; 2011 Jul; 38(7):4052-65. PubMed ID: 21859004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation.
    Wang J; Suenaga H; Liao H; Hoshi K; Yang L; Kobayashi E; Sakuma I
    Comput Med Imaging Graph; 2015 Mar; 40():147-59. PubMed ID: 25465067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Layer-based visualization and biomedical information exploration of multi-channel large histological data.
    Zhang Q; Peters T; Fenster A
    Comput Med Imaging Graph; 2019 Mar; 72():34-46. PubMed ID: 30772074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic shader generation for GPU-based multi-volume ray casting.
    Rössler F; Botchen RP; Ertl T
    IEEE Comput Graph Appl; 2008; 28(5):66-77. PubMed ID: 18753036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GL4D: a GPU-based architecture for interactive 4D visualization.
    Chu A; Fu CW; Hanson AJ; Heng PA
    IEEE Trans Vis Comput Graph; 2009; 15(6):1587-94. PubMed ID: 19834237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual interaction and visualisation of 3D medical imaging data with VTK and Unity.
    Wheeler G; Deng S; Toussaint N; Pushparajah K; Schnabel JA; Simpson JM; Gomez A
    Healthc Technol Lett; 2018 Oct; 5(5):148-153. PubMed ID: 30800321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The medical imaging interaction toolkit.
    Wolf I; Vetter M; Wegner I; Böttger T; Nolden M; Schöbinger M; Hastenteufel M; Kunert T; Meinzer HP
    Med Image Anal; 2005 Dec; 9(6):594-604. PubMed ID: 15896995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time volume rendering visualization of dual-modality PET/CT images with interactive fuzzy thresholding segmentation.
    Kim J; Cai W; Eberl S; Feng D
    IEEE Trans Inf Technol Biomed; 2007 Mar; 11(2):161-9. PubMed ID: 17390986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.