BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24841249)

  • 1. New trends in quantitative assessment of the corneal barrier function.
    Guimerà A; Illa X; Traver E; Herrero C; Maldonado MJ; Villa R
    Sensors (Basel); 2014 May; 14(5):8718-27. PubMed ID: 24841249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A non-invasive method for an in vivo assessment of corneal epithelium permeability through tetrapolar impedance measurements.
    Guimera A; Gabriel G; Plata-Cordero M; Montero L; Maldonado MJ; Villa R
    Biosens Bioelectron; 2012 Jan; 31(1):55-61. PubMed ID: 22019100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible probe for in vivo quantification of corneal epithelium permeability through non-invasive tetrapolar impedance measurements.
    Guimerà A; Illa X; Traver E; Plata-Cordero M; Yeste J; Herrero C; Lagunas C; Maldonado MJ; Villa R
    Biomed Microdevices; 2013 Oct; 15(5):849-58. PubMed ID: 23660841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel in vivo corneal trans-epithelial electrical resistance measurement device.
    Uematsu M; Mohamed YH; Onizuka N; Ueki R; Inoue D; Fujikawa A; Kitaoka T
    J Pharmacol Toxicol Methods; 2015; 76():65-71. PubMed ID: 26291653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parylene-C-Coated indium tin oxide electrodes for the optical- and electrical-impedance characterization of cells.
    Kim S; Cho S
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5830-4. PubMed ID: 22966664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-invasive assessment of corneal endothelial permeability by means of electrical impedance measurements.
    Guimera A; Ivorra A; Gabriel G; Villa R
    Med Eng Phys; 2010 Dec; 32(10):1107-15. PubMed ID: 20832346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate resistivity mouse brain mapping using microelectrode arrays.
    Béduer A; Joris P; Mosser S; Delattre V; Fraering PC; Renaud P
    Biosens Bioelectron; 2014 Oct; 60():143-53. PubMed ID: 24794406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of composite electrode-tissue impedance.
    Robinson RL; Davidson JL; Wright P; Pomfrett CJ; McCann H
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1171-4. PubMed ID: 19162873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of emboli in vessels using electrical impedance measurements--phantom and electrodes.
    Nebuya S; Noshiro M; Brown BH; Smallwood RH; Milnes P
    Physiol Meas; 2005 Apr; 26(2):S111-8. PubMed ID: 15798224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Less Invasive Corneal Transepithelial Electrical Resistance Measurement Method.
    Uematsu M; Mohamed YH; Onizuka N; Ueki R; Inoue D; Fujikawa A; Sasaki H; Kitaoka T
    Ocul Surf; 2016 Jan; 14(1):37-42. PubMed ID: 26462410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring impedance changes associated with motility and mitosis of a single cell.
    Ghenim L; Kaji H; Hoshino Y; Ishibashi T; Haguet V; Gidrol X; Nishizawa M
    Lab Chip; 2010 Oct; 10(19):2546-50. PubMed ID: 20676434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SU-8 microprobe with microelectrodes for monitoring electrical impedance in living tissues.
    Tijero M; Gabriel G; Caro J; Altuna A; Hernández R; Villa R; Berganzo J; Blanco FJ; Salido R; Fernández LJ
    Biosens Bioelectron; 2009 Apr; 24(8):2410-6. PubMed ID: 19167206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple mathematical model for electric cell-substrate impedance sensing with extended applications.
    Xiao C; Luong JH
    Biosens Bioelectron; 2010 Mar; 25(7):1774-80. PubMed ID: 20096558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time electrical impedance detection of cellular activities of oral cancer cells.
    Arias LR; Perry CA; Yang L
    Biosens Bioelectron; 2010 Jun; 25(10):2225-31. PubMed ID: 20304624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wearable Vector Electrical Bioimpedance System to Assess Knee Joint Health.
    Hersek S; Toreyin H; Teague CN; Millard-Stafford ML; Jeong HK; Bavare MM; Wolkoff P; Sawka MN; Inan OT
    IEEE Trans Biomed Eng; 2017 Oct; 64(10):2353-2360. PubMed ID: 28026745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of three kinds of electrode-skin interfaces for electrical impedance scanning.
    Yin Y; Ji Z; Zhang W; Wang N; Fu F; Liu R; You F; Shi X; Dong X
    Ann Biomed Eng; 2010 Jun; 38(6):2032-9. PubMed ID: 20437203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of human uterine cervical electrical impedance measurements derived using two tetrapolar probes of different sizes.
    Gandhi SV; Walker DC; Brown BH; Anumba DO
    Biomed Eng Online; 2006 Nov; 5():62. PubMed ID: 17125510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A SiC microdevice for the minimally invasive monitoring of ischemia in living tissues.
    Gómez R; Ivorra A; Villa R; Godignon P; Millán J; Erill I; Solà A; Hotter G; Palacios L
    Biomed Microdevices; 2006 Mar; 8(1):43-9. PubMed ID: 16491330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Simultaneous Reconstruction of Time-Varying Images and Electrode Contact Impedances in Electrical Impedance Tomography.
    Boverman G; Isaacson D; Newell JC; Saulnier GJ; Kao TJ; Amm BC; Wang X; Davenport DM; Chong DH; Sahni R; Ashe JM
    IEEE Trans Biomed Eng; 2017 Apr; 64(4):795-806. PubMed ID: 27295649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tetrapolar measurement of electrical conductivity and thickness of articular cartilage.
    Binette JS; Garon M; Savard P; McKee MD; Buschmann MD
    J Biomech Eng; 2004 Aug; 126(4):475-84. PubMed ID: 15543865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.