These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 24841371)

  • 1. Effect of geometrical parameters on the performance of longitudinal functionally graded femoral prostheses.
    Oshkour AA; Talebi H; Seyed Shirazi SF; Yau YH; Tarlochan F; Abu Osman NA
    Artif Organs; 2015 Feb; 39(2):156-64. PubMed ID: 24841371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element analysis on longitudinal and radial functionally graded femoral prosthesis.
    Oshkour AA; Abu Osman NA; Davoodi MM; Yau YH; Tarlochan F; Wan Abas WA; Bayat M
    Int J Numer Method Biomed Eng; 2013 Dec; 29(12):1412-27. PubMed ID: 23922316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of new generation femoral prostheses using functionally graded materials: a finite element analysis.
    Oshkour AA; Abu Osman NA; Yau YH; Tarlochan F; Abas WA
    Proc Inst Mech Eng H; 2013 Jan; 227(1):3-17. PubMed ID: 23516951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of various functionally graded femoral prostheses by finite element analysis.
    Oshkour AA; Talebi H; Shirazi SF; Bayat M; Yau YH; Tarlochan F; Abu Osman NA
    ScientificWorldJournal; 2014; 2014():807621. PubMed ID: 25302331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of loads and prosthesis material properties on the mechanics of the proximal femur after total hip arthroplasty.
    Cheal EJ; Spector M; Hayes WC
    J Orthop Res; 1992 May; 10(3):405-22. PubMed ID: 1569504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of micromotion initiation of an implanted femur under physiological loads and constraints using the finite element method.
    Andreaus U; Colloca M
    Proc Inst Mech Eng H; 2009 Jul; 223(5):589-605. PubMed ID: 19623912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new design of cemented stem using functionally graded materials (FGM).
    Hedia HS; Aldousari SM; Abdellatif AK; Fouda N
    Biomed Mater Eng; 2014; 24(3):1575-88. PubMed ID: 24840196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving stress shielding following total hip arthroplasty by using a femoral stem made of β type Ti-33.6Nb-4Sn with a Young's modulus gradation.
    Yamako G; Janssen D; Hanada S; Anijs T; Ochiai K; Totoribe K; Chosa E; Verdonschot N
    J Biomech; 2017 Oct; 63():135-143. PubMed ID: 28882332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and finite element analysis of femoral stem prosthesis using functional graded materials.
    Ahirwar H; Sahu A; Gupta VK; Kumar P; Nanda HS
    Comput Methods Biomech Biomed Engin; 2022 Aug; 25(11):1262-1275. PubMed ID: 34939875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Three-dimensional finite-element analysis and biomechanical design of femoral prosthesis].
    Li W; Lu H; Sun K; Qiao X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Dec; 24(6):1385-9, 1393. PubMed ID: 18232499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray image review of the bone remodeling around an osseointegrated trans-femoral implant and a finite element simulation case study.
    Xu W; Robinson K
    Ann Biomed Eng; 2008 Mar; 36(3):435-43. PubMed ID: 18197477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topological optimization in hip prosthesis design.
    Fraldi M; Esposito L; Perrella G; Cutolo A; Cowin SC
    Biomech Model Mechanobiol; 2010 Aug; 9(4):389-402. PubMed ID: 20037769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-vitro biomechanical evaluation of stress shielding and initial stability of a low-modulus hip stem made of β type Ti-33.6Nb-4Sn alloy.
    Yamako G; Chosa E; Totoribe K; Hanada S; Masahashi N; Yamada N; Itoi E
    Med Eng Phys; 2014 Dec; 36(12):1665-71. PubMed ID: 25282098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation of computed finite element stresses to bone density after remodeling around cementless femoral implants.
    Skinner HB; Kilgus DJ; Keyak J; Shimaoka EE; Kim AS; Tipton JS
    Clin Orthop Relat Res; 1994 Aug; (305):178-89. PubMed ID: 8050227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element analysis of the cervico-trochanteric stemless femoral prosthesis.
    Tai CL; Shih CH; Chen WP; Lee SS; Liu YL; Hsieh PH; Chen WJ
    Clin Biomech (Bristol); 2003 Jul; 18(6):S53-8. PubMed ID: 12828915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A numerical investigation into the influence of the properties of cobalt chrome cellular structures on the load transfer to the periprosthetic femur following total hip arthroplasty.
    Hazlehurst KB; Wang CJ; Stanford M
    Med Eng Phys; 2014 Apr; 36(4):458-66. PubMed ID: 24613500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity of periprosthetic stress-shielding to load and the bone density-modulus relationship in subject-specific finite element models.
    Weinans H; Sumner DR; Igloria R; Natarajan RN
    J Biomech; 2000 Jul; 33(7):809-17. PubMed ID: 10831755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Finite element analysis of changes in femoral stresses after elite total hip arthroplasty].
    He RX; Luo YM; Yan SG; Wu HB
    Zhonghua Yi Xue Za Zhi; 2004 Sep; 84(18):1549-53. PubMed ID: 15500718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of physiological loading in total hip replacements.
    Ramos A; Fonseca F; Simões JA
    J Biomech Eng; 2006 Aug; 128(4):579-87. PubMed ID: 16813449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical investigations of stress shielding in total hip prostheses.
    Behrens BA; Wirth CJ; Windhagen H; Nolte I; Meyer-Lindenberg A; Bouguecha A
    Proc Inst Mech Eng H; 2008 Jul; 222(5):593-600. PubMed ID: 18756678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.