BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 24841575)

  • 1. On-line modeling intracellular carbon and energy metabolism of Nannochloropsis sp. in nitrogen-repletion and nitrogen-limitation cultures.
    Zhang D; Yan F; Sun Z; Zhang Q; Xue S; Cong W
    Bioresour Technol; 2014 Jul; 164():86-92. PubMed ID: 24841575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordinated response of photosynthesis, carbon assimilation, and triacylglycerol accumulation to nitrogen starvation in the marine microalgae Isochrysis zhangjiangensis (Haptophyta).
    Wang HT; Meng YY; Cao XP; Ai JN; Zhou JN; Xue S; Wang WL
    Bioresour Technol; 2015 Feb; 177():282-8. PubMed ID: 25496949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH-upshock yields more lipids in nitrogen-starved Neochloris oleoabundans.
    Santos AM; Wijffels RH; Lamers PP
    Bioresour Technol; 2014; 152():299-306. PubMed ID: 24296123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp.
    Pal D; Khozin-Goldberg I; Cohen Z; Boussiba S
    Appl Microbiol Biotechnol; 2011 May; 90(4):1429-41. PubMed ID: 21431397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous growth and neutral lipid accumulation in microalgae.
    Klok AJ; Martens DE; Wijffels RH; Lamers PP
    Bioresour Technol; 2013 Apr; 134():233-43. PubMed ID: 23500580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gas Transfer Controls Carbon Limitation During Biomass Production by Marine Microalgae.
    Tamburic B; Evenhuis CR; Suggett DJ; Larkum AW; Raven JA; Ralph PJ
    ChemSusChem; 2015 Aug; 8(16):2727-36. PubMed ID: 26212226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of carbon limitation on photosynthetic electron transport in Nannochloropsis oculata.
    Zavřel T; Szabó M; Tamburic B; Evenhuis C; Kuzhiumparambil U; Literáková P; Larkum AWD; Raven JA; Červený J; Ralph PJ
    J Photochem Photobiol B; 2018 Apr; 181():31-43. PubMed ID: 29486460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp.
    Recht L; Zarka A; Boussiba S
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1495-503. PubMed ID: 22361859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of neutral lipid and carbohydrate quotas in microalgae using adaptive interval observers.
    Mairet F; Moisan M; Bernard O
    Bioprocess Biosyst Eng; 2014 Jan; 37(1):51-61. PubMed ID: 23411872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077.
    Pancha I; Chokshi K; George B; Ghosh T; Paliwal C; Maurya R; Mishra S
    Bioresour Technol; 2014 Mar; 156():146-54. PubMed ID: 24495540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of an industrial microalgal strain for starch production in biorefinery context: The effect of nitrogen and carbon concentration on starch accumulation.
    Gifuni I; Olivieri G; Pollio A; Marzocchella A
    N Biotechnol; 2018 Mar; 41():46-54. PubMed ID: 29237569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixotrophic continuous flow cultivation of Chlorella protothecoides for lipids.
    Wang Y; Rischer H; Eriksen NT; Wiebe MG
    Bioresour Technol; 2013 Sep; 144():608-14. PubMed ID: 23907064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The characteristics of TAG and EPA accumulation in Nannochloropsis oceanica IMET1 under different nitrogen supply regimes.
    Meng Y; Jiang J; Wang H; Cao X; Xue S; Yang Q; Wang W
    Bioresour Technol; 2015 Mar; 179():483-489. PubMed ID: 25575208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced algae growth in both phototrophic and mixotrophic culture under blue light.
    Das P; Lei W; Aziz SS; Obbard JP
    Bioresour Technol; 2011 Feb; 102(4):3883-7. PubMed ID: 21183340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of oil-producing algae as potential biodiesel feedstock.
    Zhou X; Ge H; Xia L; Zhang D; Hu C
    Bioresour Technol; 2013 Apr; 134():24-9. PubMed ID: 23500555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Achieving high lipid productivity of a thermotolerant microalga Desmodesmus sp. F2 by optimizing environmental factors and nutrient conditions.
    Ho SH; Chang JS; Lai YY; Chen CN
    Bioresour Technol; 2014 Mar; 156():108-16. PubMed ID: 24491294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation.
    Cheirsilp B; Torpee S
    Bioresour Technol; 2012 Apr; 110():510-6. PubMed ID: 22361073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of NH
    Ruan Z; Giordano M
    Plant Cell Environ; 2017 Feb; 40(2):227-236. PubMed ID: 27982443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid determination of bulk microalgal biochemical composition by Fourier-Transform Infrared spectroscopy.
    Mayers JJ; Flynn KJ; Shields RJ
    Bioresour Technol; 2013 Nov; 148():215-20. PubMed ID: 24050924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plastic and adaptive responses of plant respiration to changes in atmospheric CO(2) concentration.
    Gonzàlez-Meler MA; Blanc-Betes E; Flower CE; Ward JK; Gomez-Casanovas N
    Physiol Plant; 2009 Dec; 137(4):473-84. PubMed ID: 19671094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.