BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24841621)

  • 1. Molecular bridge enables anomalous enhancement in thermal transport across hard-soft material interfaces.
    Sun F; Zhang T; Jobbins MM; Guo Z; Zhang X; Zheng Z; Tang D; Ptasinska S; Luo T
    Adv Mater; 2014 Sep; 26(35):6093-9. PubMed ID: 24841621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Fin Effect from Heterogeneous Self-Assembled Monolayer Enhances Thermal Conductance across Hard-Soft Interfaces.
    Wei X; Zhang T; Luo T
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33740-33748. PubMed ID: 28885818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bonding-induced thermal transport enhancement across a hard/soft material interface using molecular monolayers.
    Yuan C; Huang M; Cheng Y; Luo X
    Phys Chem Chem Phys; 2017 Mar; 19(10):7352-7358. PubMed ID: 28240333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin of Hydrophilic Surface Functionalization-Induced Thermal Conductance Enhancement across Solid-Water Interfaces.
    Huang D; Ma R; Zhang T; Luo T
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28159-28165. PubMed ID: 30056700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymeric Self-Assembled Monolayers Anomalously Improve Thermal Transport across Graphene/Polymer Interfaces.
    Zhang L; Liu L
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28949-28958. PubMed ID: 28766936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Hydrogen Bonds in Thermal Transport across Hard/Soft Material Interfaces.
    Zhang T; Gans-Forrest AR; Lee E; Zhang X; Qu C; Pang Y; Sun F; Luo T
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33326-33334. PubMed ID: 27934170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the Thermal Conductance of Polymer and Sapphire Interface via Self-Assembled Monolayer.
    Zheng K; Sun F; Zhu J; Ma Y; Li X; Tang D; Wang F; Wang X
    ACS Nano; 2016 Aug; 10(8):7792-8. PubMed ID: 27501117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of Soft/Hard Interface with High Adhesion Energy and Low Interfacial Thermal Resistance via Regulation of Interfacial Hydrogen Bonding Interaction.
    Zeng X; Liang T; Cheng X; Fan J; Pang Y; Xu J; Sun R; Xia X; Zeng X
    Nano Lett; 2024 May; 24(21):6386-6394. PubMed ID: 38743576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Cost Nanostructures from Nanoparticle-Assisted Large-Scale Lithography Significantly Enhance Thermal Energy Transport across Solid Interfaces.
    Lee E; Menumerov E; Hughes RA; Neretina S; Luo T
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34690-34698. PubMed ID: 30209944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanostructures Significantly Enhance Thermal Transport across Solid Interfaces.
    Lee E; Zhang T; Yoo T; Guo Z; Luo T
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35505-35512. PubMed ID: 27983798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can Adhesion Energy Optimize Interface Thermal Resistance at a Soft/Hard Material Interface?
    Cheng X; He D; Zhou M; Zhang P; Wang S; Ren L; Sun R; Zeng X
    Nano Lett; 2023 Jul; 23(14):6673-6680. PubMed ID: 37428875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchically hydrogen-bonded graphene/polymer interfaces with drastically enhanced interfacial thermal conductance.
    Zhang L; Liu L
    Nanoscale; 2019 Feb; 11(8):3656-3664. PubMed ID: 30741290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic structure causing an obvious difference in thermal conductance at the Pd-H
    Li S; Chen Y; Zhao J; Wang C; Wei N
    Nanoscale; 2020 Sep; 12(34):17870-17879. PubMed ID: 32840546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Assembled Monolayers for the Polymer/Semiconductor Interface with Improved Interfacial Thermal Management.
    Lu J; Yuan K; Sun F; Zheng K; Zhang Z; Zhu J; Wang X; Zhang X; Zhuang Y; Ma Y; Cao X; Zhang J; Tang D
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42708-42714. PubMed ID: 31625728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial Defect Vibrations Enhance Thermal Transport in Amorphous Multilayers with Ultrahigh Thermal Boundary Conductance.
    Giri A; King SW; Lanford WA; Mei AB; Merrill D; Li L; Oviedo R; Richards J; Olson DH; Braun JL; Gaskins JT; Deangelis F; Henry A; Hopkins PE
    Adv Mater; 2018 Nov; 30(44):e1804097. PubMed ID: 30222218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the Interfacial Thermal Conductance between Polystyrene and Sapphire by Controlling the Interfacial Adhesion.
    Zheng K; Sun F; Tian X; Zhu J; Ma Y; Tang D; Wang F
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23644-9. PubMed ID: 26451742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Structure Effect of a Self-Assembled Monolayer on Thermal Resistance across an Interface.
    Song L; Zhang Y; Yang W; Tan J; Cheng L
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of light atoms on thermal transport across solid-solid interfaces.
    Li R; Gordiz K; Henry A; Hopkins PE; Lee E; Luo T
    Phys Chem Chem Phys; 2019 Aug; 21(31):17029-17035. PubMed ID: 31353367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors influencing thermal transport across graphene/metal interfaces with van der Waals interactions.
    Yang H; Tang Y; Yang P
    Nanoscale; 2019 Aug; 11(30):14155-14163. PubMed ID: 31334741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Weaker bonding can give larger thermal conductance at highly mismatched interfaces.
    Xu B; Hu S; Hung SW; Shao C; Chandra H; Chen FR; Kodama T; Shiomi J
    Sci Adv; 2021 Apr; 7(17):. PubMed ID: 33893088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.