BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24841754)

  • 1. Proline localized to the interaction interface can mediate self-association of transmembrane domains.
    Sal-Man N; Gerber D; Shai Y
    Biochim Biophys Acta; 2014 Sep; 1838(9):2313-8. PubMed ID: 24841754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The composition rather than position of polar residues (QxxS) drives aspartate receptor transmembrane domain dimerization in vivo.
    Sal-Man N; Gerber D; Shai Y
    Biochemistry; 2004 Mar; 43(8):2309-13. PubMed ID: 14979727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arginine mutations within a transmembrane domain of Tar, an Escherichia coli aspartate receptor, can drive homodimer dissociation and heterodimer association in vivo.
    Sal-Man N; Shai Y
    Biochem J; 2005 Jan; 385(Pt 1):29-36. PubMed ID: 15330757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The identification of a minimal dimerization motif QXXS that enables homo- and hetero-association of transmembrane helices in vivo.
    Sal-Man N; Gerber D; Shai Y
    J Biol Chem; 2005 Jul; 280(29):27449-57. PubMed ID: 15911619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmembrane domains interactions within the membrane milieu: principles, advances and challenges.
    Fink A; Sal-Man N; Gerber D; Shai Y
    Biochim Biophys Acta; 2012 Apr; 1818(4):974-83. PubMed ID: 22155642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specificity in transmembrane helix-helix interactions mediated by aromatic residues.
    Sal-Man N; Gerber D; Bloch I; Shai Y
    J Biol Chem; 2007 Jul; 282(27):19753-61. PubMed ID: 17488729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hetero-assembly between all-L- and all-D-amino acid transmembrane domains: forces involved and implication for inactivation of membrane proteins.
    Sal-Man N; Gerber D; Shai Y
    J Mol Biol; 2004 Nov; 344(3):855-64. PubMed ID: 15533450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions.
    Senes A; Gerstein M; Engelman DM
    J Mol Biol; 2000 Feb; 296(3):921-36. PubMed ID: 10677292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong dimerization of wild-type ErbB2/Neu transmembrane domain and the oncogenic Val664Glu mutant in mammalian plasma membranes.
    Placone J; He L; Del Piccolo N; Hristova K
    Biochim Biophys Acta; 2014 Sep; 1838(9):2326-30. PubMed ID: 24631664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular recognition at the membrane-water interface: controlling integral peptide helices by off-membrane nucleobase pairing.
    Schneggenburger PE; Müllar S; Worbs B; Steinem C; Diederichsen U
    J Am Chem Soc; 2010 Jun; 132(23):8020-8. PubMed ID: 20481532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmembrane domain mediated self-assembly of major coat protein subunits from Ff bacteriophage.
    Melnyk RA; Partridge AW; Deber CM
    J Mol Biol; 2002 Jan; 315(1):63-72. PubMed ID: 11771966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dimerization interface of the glycoprotein Ibβ transmembrane domain corresponds to polar residues within a leucine zipper motif.
    Wei P; Liu X; Hu MH; Zuo LM; Kai M; Wang R; Luo SZ
    Protein Sci; 2011 Nov; 20(11):1814-23. PubMed ID: 21830242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beta-branched residues adjacent to GG4 motifs promote the efficient association of glycophorin A transmembrane helices.
    Cunningham F; Poulsen BE; Ip W; Deber CM
    Biopolymers; 2011; 96(3):340-7. PubMed ID: 21072853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Side chains at the membrane-water interface modulate the signaling state of a transmembrane receptor.
    Miller AS; Falke JJ
    Biochemistry; 2004 Feb; 43(7):1763-70. PubMed ID: 14967017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random Escherichia coli genomic library.
    Leeds JA; Boyd D; Huber DR; Sonoda GK; Luu HT; Engelman DM; Beckwith J
    J Mol Biol; 2001 Oct; 313(1):181-95. PubMed ID: 11601855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence-specific dimerization of the transmembrane domain of the "BH3-only" protein BNIP3 in membranes and detergent.
    Sulistijo ES; Jaszewski TM; MacKenzie KR
    J Biol Chem; 2003 Dec; 278(51):51950-6. PubMed ID: 14532263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retention of native-like oligomerization states in transmembrane segment peptides: application to the Escherichia coli aspartate receptor.
    Melnyk RA; Partridge AW; Deber CM
    Biochemistry; 2001 Sep; 40(37):11106-13. PubMed ID: 11551208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential repositioning of the second transmembrane helices from E. coli Tar and EnvZ upon moving the flanking aromatic residues.
    Botelho SC; Enquist K; von Heijne G; Draheim RR
    Biochim Biophys Acta; 2015 Feb; 1848(2):615-21. PubMed ID: 25445668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR-based approach to measure the free energy of transmembrane helix-helix interactions.
    Mineev KS; Lesovoy DM; Usmanova DR; Goncharuk SA; Shulepko MA; Lyukmanova EN; Kirpichnikov MP; Bocharov EV; Arseniev AS
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):164-72. PubMed ID: 24036227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of proline residues in transmembrane helix packing.
    Orzáez M; Salgado J; Giménez-Giner A; Pérez-Payá E; Mingarro I
    J Mol Biol; 2004 Jan; 335(2):631-40. PubMed ID: 14672669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.