BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 24841889)

  • 21. Enantio- and diastereoselective access to distant stereocenters embedded within tetrahydroxanthenes: utilizing ortho-quinone methides as reactive intermediates in asymmetric Brønsted acid catalysis.
    Hsiao CC; Liao HH; Rueping M
    Angew Chem Int Ed Engl; 2014 Nov; 53(48):13258-63. PubMed ID: 25287936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Total synthesis and biological evaluation of the resveratrol-derived polyphenol natural products hopeanol and hopeahainol A.
    Nicolaou KC; Kang Q; Wu TR; Lim CS; Chen DY
    J Am Chem Soc; 2010 Jun; 132(21):7540-8. PubMed ID: 20462209
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro evidence for the formation of reactive intermediates of resveratrol in human liver microsomes.
    Steenwyk RC; Tan B
    Xenobiotica; 2010 Jan; 40(1):62-71. PubMed ID: 19883238
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel synthesis of 3-substituted 2,3-dihydrobenzofurans via ortho-quinone methide intermediates generated in situ.
    Shaikh Ak; Varvounis G
    Org Lett; 2014 Mar; 16(5):1478-81. PubMed ID: 24571271
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regioselective reactions for programmable resveratrol oligomer synthesis.
    Snyder SA; Gollner A; Chiriac MI
    Nature; 2011 Jun; 474(7352):461-6. PubMed ID: 21697944
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nazarov cyclization of divinyl and arylvinyl epoxides: application in the synthesis of resveratrol-based natural products.
    Sudhakar G; Satish K
    Chemistry; 2015 Apr; 21(17):6475-80. PubMed ID: 25760544
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemistry and Biology of Resveratrol-Derived Natural Products.
    Keylor MH; Matsuura BS; Stephenson CR
    Chem Rev; 2015 Sep; 115(17):8976-9027. PubMed ID: 25835567
    [No Abstract]   [Full Text] [Related]  

  • 28. Enantioselective [4 + 2] cycloadditions of o-quinone methides: total synthesis of (+)-mimosifoliol and formal synthesis of (+)-tolterodine.
    Selenski C; Pettus TR
    J Org Chem; 2004 Dec; 69(26):9196-203. PubMed ID: 15609955
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computation-guided asymmetric total syntheses of resveratrol dimers.
    Nakajima M; Adachi Y; Nemoto T
    Nat Commun; 2022 Jan; 13(1):152. PubMed ID: 35013143
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemoenzymatic
    Doyon TJ; Perkins JC; Baker Dockrey SA; Romero EO; Skinner KC; Zimmerman PM; Narayan ARH
    J Am Chem Soc; 2019 Dec; 141(51):20269-20277. PubMed ID: 31840992
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Emergence of Quinone Methides in Asymmetric Organocatalysis.
    Caruana L; Fochi M; Bernardi L
    Molecules; 2015 Jun; 20(7):11733-64. PubMed ID: 26121398
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A formal [4 + 4] complementary ambiphile pairing reaction: a new cyclization pathway for ortho-quinone methides.
    Samarakoon TB; Hur MY; Kurtz RD; Hanson PR
    Org Lett; 2010 May; 12(10):2182-5. PubMed ID: 20394415
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emerging Roles of in Situ Generated Quinone Methides in Metal-Free Catalysis.
    Jaworski AA; Scheidt KA
    J Org Chem; 2016 Nov; 81(21):10145-10153. PubMed ID: 27513764
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A mild method for generation of o-quinone methides under basic conditions. The facile synthesis of trans-2,3-dihydrobenzofurans.
    Chen MW; Cao LL; Ye ZS; Jiang GF; Zhou YG
    Chem Commun (Camb); 2013 Feb; 49(16):1660-2. PubMed ID: 23340596
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Catalytic Asymmetric 1,6-Conjugate Addition of para-Quinone Methides: Formation of All-Carbon Quaternary Stereocenters.
    Wang Z; Wong YF; Sun J
    Angew Chem Int Ed Engl; 2015 Nov; 54(46):13711-4. PubMed ID: 26403542
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ortho-Quinone methides in natural product synthesis.
    Willis NJ; Bray CD
    Chemistry; 2012 Jul; 18(30):9160-73. PubMed ID: 22707392
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nucleophilic capture of the imino-quinone methide type intermediates generated from 2-aminothiazol-5-yl carbinols.
    Saulnier MG; Dodier M; Frennesson DB; Langley DR; Vyas DM
    Org Lett; 2009 Nov; 11(22):5154-7. PubMed ID: 19827772
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Taming reactive phenol tautomers and o-quinone methides with transition metals: a structure-reactivity relationship.
    Amouri H; Le Bras J
    Acc Chem Res; 2002 Jul; 35(7):501-10. PubMed ID: 12118989
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enantioselective synthesis of triarylmethanes
    Han Z; Zang Y; Liu C; Guo W; Huang H; Sun J
    Chem Commun (Camb); 2022 Jun; 58(51):7128-7131. PubMed ID: 35667384
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure-activity study on the quinone/quinone methide chemistry of flavonoids.
    Awad HM; Boersma MG; Boeren S; van Bladeren PJ; Vervoort J; Rietjens IM
    Chem Res Toxicol; 2001 Apr; 14(4):398-408. PubMed ID: 11304128
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.