BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24842060)

  • 1. Uncovering pH-dependent transient states of proteins with buried ionizable residues.
    Goh GB; Laricheva EN; Brooks CL
    J Am Chem Soc; 2014 Jun; 136(24):8496-9. PubMed ID: 24842060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting extreme pKa shifts in staphylococcal nuclease mutants with constant pH molecular dynamics.
    Arthur EJ; Yesselman JD; Brooks CL
    Proteins; 2011 Dec; 79(12):3276-86. PubMed ID: 22002886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local Backbone Flexibility as a Determinant of the Apparent pK
    Peck MT; Ortega G; De Luca-Johnson JN; Schlessman JL; Robinson AC; García-Moreno E B
    Biochemistry; 2017 Oct; 56(40):5338-5346. PubMed ID: 28952715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational Reorganization Coupled to the Ionization of Internal Lys Residues in Proteins.
    Richman DE; Majumdar A; García-Moreno E B
    Biochemistry; 2015 Sep; 54(38):5888-97. PubMed ID: 26335188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-Dependent Conformational Changes Due to Ionizable Residues in a Hydrophobic Protein Interior: The Study of L25K and L125K Variants of SNase.
    Sarkar A; Gupta PL; Roitberg AE
    J Phys Chem B; 2019 Jul; 123(27):5742-5754. PubMed ID: 31260304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charges in Hydrophobic Environments: A Strategy for Identifying Alternative States in Proteins.
    Robinson AC; Majumdar A; Schlessman JL; García-Moreno E B
    Biochemistry; 2017 Jan; 56(1):212-218. PubMed ID: 28009501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-Dependent Conformational Changes Lead to a Highly Shifted p
    Sarkar A; Roitberg AE
    J Phys Chem B; 2020 Dec; 124(49):11072-11080. PubMed ID: 33259714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GPU-Accelerated All-Atom Particle-Mesh Ewald Continuous Constant pH Molecular Dynamics in Amber.
    Harris JA; Liu R; Martins de Oliveira V; Vázquez-Montelongo EA; Henderson JA; Shen J
    J Chem Theory Comput; 2022 Dec; 18(12):7510-7527. PubMed ID: 36377980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydronium Ions Accompanying Buried Acidic Residues Lead to High Apparent Dielectric Constants in the Interior of Proteins.
    Wu X; Brooks BR
    J Phys Chem B; 2018 Jun; 122(23):6215-6223. PubMed ID: 29771522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Coupled Ionization-Conformational Equilibrium Is Required To Understand the Properties of Ionizable Residues in the Hydrophobic Interior of Staphylococcal Nuclease.
    Liu J; Swails J; Zhang JZH; He X; Roitberg AE
    J Am Chem Soc; 2018 Feb; 140(5):1639-1648. PubMed ID: 29308643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constant pH molecular dynamics of proteins in explicit solvent with proton tautomerism.
    Goh GB; Hulbert BS; Zhou H; Brooks CL
    Proteins; 2014 Jul; 82(7):1319-31. PubMed ID: 24375620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH-dependent transient conformational states control optical properties in cyan fluorescent protein.
    Laricheva EN; Goh GB; Dickson A; Brooks CL
    J Am Chem Soc; 2015 Mar; 137(8):2892-900. PubMed ID: 25647152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH dependence of conformational fluctuations of the protein backbone.
    Richman DE; Majumdar A; García-Moreno E B
    Proteins; 2014 Nov; 82(11):3132-43. PubMed ID: 25137073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous Properties of Lys Residues Buried in the Hydrophobic Interior of a Protein Revealed with
    Kougentakis CM; Grasso EM; Robinson AC; Caro JA; Schlessman JL; Majumdar A; García-Moreno E B
    J Phys Chem Lett; 2018 Jan; 9(2):383-387. PubMed ID: 29266956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pKa of residue 66 in Staphylococal nuclease. I. Insights from QM/MM simulations with conventional sampling.
    Ghosh N; Cui Q
    J Phys Chem B; 2008 Jul; 112(28):8387-97. PubMed ID: 18540669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MCCE analysis of the pKas of introduced buried acids and bases in staphylococcal nuclease.
    Gunner MR; Zhu X; Klein MC
    Proteins; 2011 Dec; 79(12):3306-19. PubMed ID: 21910138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring the successes and deficiencies of constant pH molecular dynamics: a blind prediction study.
    Williams SL; Blachly PG; McCammon JA
    Proteins; 2011 Dec; 79(12):3381-8. PubMed ID: 22072520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pKa predictions for proteins, RNAs, and DNAs with the Gaussian dielectric function using DelPhi pKa.
    Wang L; Li L; Alexov E
    Proteins; 2015 Dec; 83(12):2186-97. PubMed ID: 26408449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microscopic mechanisms that govern the titration response and pK
    Zheng Y; Cui Q
    Proteins; 2017 Feb; 85(2):268-281. PubMed ID: 27862310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A buried lysine that titrates with a normal pKa: role of conformational flexibility at the protein-water interface as a determinant of pKa values.
    Harms MJ; Schlessman JL; Chimenti MS; Sue GR; Damjanović A; García-Moreno B
    Protein Sci; 2008 May; 17(5):833-45. PubMed ID: 18369193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.