BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 24842574)

  • 1. Development of a magnetic 3D spheroid platform with potential application for high-throughput drug screening.
    Guo WM; Loh XJ; Tan EY; Loo JS; Ho VH
    Mol Pharm; 2014 Jul; 11(7):2182-9. PubMed ID: 24842574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of uniform-sized multicellular tumor spheroids using hydrogel microwells for advanced drug screening.
    Lee JM; Park DY; Yang L; Kim EJ; Ahrberg CD; Lee KB; Chung BG
    Sci Rep; 2018 Nov; 8(1):17145. PubMed ID: 30464248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in Multicellular Tumor Spheroid Generation for Drug Screening.
    Lee KH; Kim TH
    Biosensors (Basel); 2021 Nov; 11(11):. PubMed ID: 34821661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation and functional assessment of 3D multicellular spheroids in droplet based microfluidics platform.
    Sabhachandani P; Motwani V; Cohen N; Sarkar S; Torchilin V; Konry T
    Lab Chip; 2016 Feb; 16(3):497-505. PubMed ID: 26686985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytotoxic and molecular differences of anticancer agents on 2D and 3D cell culture.
    Alwahsh M; Al-Doridee A; Jasim S; Awwad O; Hergenröder R; Hamadneh L
    Mol Biol Rep; 2024 Jun; 51(1):721. PubMed ID: 38829450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iTRAQ Quantitative Proteomic Profiling and MALDI-MSI of Colon Cancer Spheroids Treated with Combination Chemotherapies in a 3D Printed Fluidic Device.
    LaBonia GJ; Ludwig KR; Mousseau CB; Hummon AB
    Anal Chem; 2018 Jan; 90(2):1423-1430. PubMed ID: 29227110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Stromal Fibroblast-Modulated 3D Tumor Spheroid Model for Studying Tumor-Stroma Interaction and Drug Discovery.
    Shao H; Moller M; Wang D; Ting A; Boulina M; Liu ZJ
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32176195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of PNIPAm-based thermoresponsive hydrogel microwell arrays for tumor spheroid formation.
    Dhamecha D; Le D; Chakravarty T; Perera K; Dutta A; Menon JU
    Mater Sci Eng C Mater Biol Appl; 2021 Jun; 125():112100. PubMed ID: 33965110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Microfluidic Multisize Spheroid Array for Multiparametric Screening of Anticancer Drugs and Blood-Brain Barrier Transport Properties.
    Eilenberger C; Rothbauer M; Selinger F; Gerhartl A; Jordan C; Harasek M; Schädl B; Grillari J; Weghuber J; Neuhaus W; Küpcü S; Ertl P
    Adv Sci (Weinh); 2021 Jun; 8(11):e2004856. PubMed ID: 34105271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput imaging: Focusing in on drug discovery in 3D.
    Li L; Zhou Q; Voss TC; Quick KL; LaBarbera DV
    Methods; 2016 Mar; 96():97-102. PubMed ID: 26608110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering a Brain Cancer Chip for High-throughput Drug Screening.
    Fan Y; Nguyen DT; Akay Y; Xu F; Akay M
    Sci Rep; 2016 May; 6():25062. PubMed ID: 27151082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro evaluation of doxorubicin release from diopside particles on MG-63 and HF spheroids as a 3D model of tumor and healthy tissues.
    Bulygina IN; Karshieva SS; Permyakova ES; Korol AA; Kolesnikov EA; Choudhary R; Senatov FS; Koudan EV
    Toxicol In Vitro; 2024 Jun; 98():105830. PubMed ID: 38641231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of therapeutics in three-dimensional cell culture systems by MALDI imaging mass spectrometry.
    Liu X; Weaver EM; Hummon AB
    Anal Chem; 2013 Jul; 85(13):6295-302. PubMed ID: 23724927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High throughput generating stable spheroids with tip-refill wafer.
    Yang X; Pan R; Ning K; Xie Y; Chen F; Sun W; Yu L
    Biotechnol J; 2024 Feb; 19(2):e2300427. PubMed ID: 38403449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of Antitumor and Antiproliferative Efficacy and Detection of Protein-Protein Interactions in Cancer Cells from 3D Tumor Spheroids.
    Sonju JJ; Dahal A; Prasasty VD; Shrestha P; Liu YY; Jois SD
    Curr Protoc; 2022 Oct; 2(10):e569. PubMed ID: 36286844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Three-Dimensional Spheroid Model to Investigate the Tumor-Stromal Interaction in Hepatocellular Carcinoma.
    Zaki MYW; Shetty S; Wilkinson AL; Patten DA; Oakley F; Reeves H
    J Vis Exp; 2021 Sep; (175):. PubMed ID: 34661571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyglycerol-Based Biomedical Matrix for Immunomagnetic Circulating Tumor Cell Isolation and Their Expansion into Tumor Spheroids for Drug Screening.
    Tang P; Thongrom B; Arora S; Haag R
    Adv Healthc Mater; 2023 Oct; 12(26):e2300842. PubMed ID: 37402278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delivery of Anticancer Drugs Using Microbubble-Assisted Ultrasound in a 3D Spheroid Model.
    Roy M; Alix C; Burlaud-Gaillard J; Fouan D; Raoul W; Bouakaz A; Blanchard E; Lecomte T; Viaud-Massuard MC; Sasaki N; Serrière S; Escoffre JM
    Mol Pharm; 2024 Feb; 21(2):831-844. PubMed ID: 38174896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods: Using Three-Dimensional Culture (Spheroids) as an In Vitro Model of Tumour Hypoxia.
    Leek R; Grimes DR; Harris AL; McIntyre A
    Adv Exp Med Biol; 2016; 899():167-96. PubMed ID: 27325267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal variation of endogenous cell-generated stresses within 3D multicellular spheroids.
    Lucio AA; Mongera A; Shelton E; Chen R; Doyle AM; Campàs O
    Sci Rep; 2017 Sep; 7(1):12022. PubMed ID: 28931891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.